57,168 research outputs found
Coexistence of full which-path information and interference in Wheelers delayed choice experiment with photons
We present a computer simulation model that is a one-to-one copy of an
experimental realization of Wheeler's delayed choice experiment that employs a
single photon source and a Mach-Zehnder interferometer composed of a 50/50
input beam splitter and a variable output beam splitter with adjustable
reflection coefficient (V. Jacques {\sl et al.}, Phys. Rev. Lett. 100,
220402 (2008)). For , experimentally measured values of the
interference visibility and the path distinguishability , a parameter
quantifying the which-path information WPI, are found to fulfill the
complementary relation , thereby allowing to obtain partial WPI
while keeping interference with limited visibility. The simulation model that
is solely based on experimental facts, that satisfies Einstein's criterion of
local causality and that does not rely on any concept of quantum theory or of
probability theory, reproduces quantitatively the averages calculated from
quantum theory. Our results prove that it is possible to give a particle-only
description of the experiment, that one can have full WPI even if D=0, V=1 and
therefore that the relation cannot be regarded as quantifying
the notion of complementarity.Comment: Physica E, in press; see also http://www.compphys.ne
Spectrum of low-lying configurations with negative parity
Spectrum of low-lying five-quark configurations with strangeness quantum
number and negative parity is studied in three kinds of constituent
quark models, namely the one gluon exchange, Goldstone Boson exchange, and
instanton-induced hyperfine interaction models, respectively. Our numerical
results show that the lowest energy states in all the three employed models are
lying at 1800 MeV, about 200 MeV lower than predictions of various
quenched three-quark models. In addition, it is very interesting that the state
with the lowest energy in one gluon exchange model is with spin 3/2, but 1/2 in
the other two models.Comment: Version published in Phys. Rev.
ADN: An Information-Centric Networking Architecture for the Internet of Things
Forwarding data by name has been assumed to be a necessary aspect of an
information-centric redesign of the current Internet architecture that makes
content access, dissemination, and storage more efficient. The Named Data
Networking (NDN) and Content-Centric Networking (CCNx) architectures are the
leading examples of such an approach. However, forwarding data by name incurs
storage and communication complexities that are orders of magnitude larger than
solutions based on forwarding data using addresses. Furthermore, the specific
algorithms used in NDN and CCNx have been shown to have a number of
limitations. The Addressable Data Networking (ADN) architecture is introduced
as an alternative to NDN and CCNx. ADN is particularly attractive for
large-scale deployments of the Internet of Things (IoT), because it requires
far less storage and processing in relaying nodes than NDN. ADN allows things
and data to be denoted by names, just like NDN and CCNx do. However, instead of
replacing the waist of the Internet with named-data forwarding, ADN uses an
address-based forwarding plane and introduces an information plane that
seamlessly maps names to addresses without the involvement of end-user
applications. Simulation results illustrate the order of magnitude savings in
complexity that can be attained with ADN compared to NDN.Comment: 10 page
From Jeff=1/2 insulator to p-wave superconductor in single-crystal Sr2Ir1-xRuxO4 (0 < x< 1)
Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC)
whereas the Sr2RuO4 is a p-wave superconductor. The contrasting ground states
have been shown to result from the critical role of the strong SOC in the
iridate. Our investigation of structural, transport, and magnetic properties
reveals that substituting 4d Ru4+ (4d4) ions for 5d Ir4+(5d5) ions in Sr2IrO4
directly adds holes to the t2g bands, reduces the SOC and thus rebalances the
competing energies in single-crystal Sr2Ir1-xRuxO4. A profound effect of Ru
doping driving a rich phase diagram is a structural phase transition from a
distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that
accompanies a phase transition from an antiferromagnetic-insulating state to a
paramagnetic-metal state. We also make a comparison drawn with Rh doped
Sr2IrO4, highlighting important similarities and differences.Comment: 18 pages,7 figure
Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system
In this paper, we study time-optimal control problems related to system of
two coupled qubits where the time scales involved in performing unitary
transformations on each qubit are significantly different. In particular, we
address the case where unitary transformations produced by evolutions of the
coupling take much longer time as compared to the time required to produce
unitary transformations on the first qubit but much shorter time as compared to
the time to produce unitary transformations on the second qubit. We present a
canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1),
which is natural in understanding the time-optimal control problem of such a
coupled qubit system with significantly different time scales. A typical
setting involves dynamics of a coupled electron-nuclear spin system in pulsed
electron paramagnetic resonance experiments at high fields. Using the proposed
canonical decomposition, we give time-optimal control algorithms to synthesize
various unitary transformations of interest in coherent spectroscopy and
quantum information processing.Comment: 8 pages, 3 figure
- …