85 research outputs found

    Geometrical organization of solutions to random linear Boolean equations

    Full text link
    The random XORSAT problem deals with large random linear systems of Boolean variables. The difficulty of such problems is controlled by the ratio of number of equations to number of variables. It is known that in some range of values of this parameter, the space of solutions breaks into many disconnected clusters. Here we study precisely the corresponding geometrical organization. In particular, the distribution of distances between these clusters is computed by the cavity method. This allows to study the `x-satisfiability' threshold, the critical density of equations where there exist two solutions at a given distance.Comment: 20 page

    Exhaustive enumeration unveils clustering and freezing in random 3-SAT

    Full text link
    We study geometrical properties of the complete set of solutions of the random 3-satisfiability problem. We show that even for moderate system sizes the number of clusters corresponds surprisingly well with the theoretic asymptotic prediction. We locate the freezing transition in the space of solutions which has been conjectured to be relevant in explaining the onset of computational hardness in random constraint satisfaction problems.Comment: 4 pages, 3 figure

    Reconstruction of Random Colourings

    Get PDF
    Reconstruction problems have been studied in a number of contexts including biology, information theory and and statistical physics. We consider the reconstruction problem for random kk-colourings on the Δ\Delta-ary tree for large kk. Bhatnagar et. al. showed non-reconstruction when Δ12klogko(klogk)\Delta \leq \frac12 k\log k - o(k\log k) and reconstruction when Δklogk+o(klogk)\Delta \geq k\log k + o(k\log k). We tighten this result and show non-reconstruction when Δk[logk+loglogk+1ln2o(1)]\Delta \leq k[\log k + \log \log k + 1 - \ln 2 -o(1)] and reconstruction when Δk[logk+loglogk+1+o(1)]\Delta \geq k[\log k + \log \log k + 1+o(1)].Comment: Added references, updated notatio

    Focused Local Search for Random 3-Satisfiability

    Full text link
    A local search algorithm solving an NP-complete optimisation problem can be viewed as a stochastic process moving in an 'energy landscape' towards eventually finding an optimal solution. For the random 3-satisfiability problem, the heuristic of focusing the local moves on the presently unsatisfiedclauses is known to be very effective: the time to solution has been observed to grow only linearly in the number of variables, for a given clauses-to-variables ratio α\alpha sufficiently far below the critical satisfiability threshold αc4.27\alpha_c \approx 4.27. We present numerical results on the behaviour of three focused local search algorithms for this problem, considering in particular the characteristics of a focused variant of the simple Metropolis dynamics. We estimate the optimal value for the ``temperature'' parameter η\eta for this algorithm, such that its linear-time regime extends as close to αc\alpha_c as possible. Similar parameter optimisation is performed also for the well-known WalkSAT algorithm and for the less studied, but very well performing Focused Record-to-Record Travel method. We observe that with an appropriate choice of parameters, the linear time regime for each of these algorithms seems to extend well into ratios α>4.2\alpha > 4.2 -- much further than has so far been generally assumed. We discuss the statistics of solution times for the algorithms, relate their performance to the process of ``whitening'', and present some conjectures on the shape of their computational phase diagrams.Comment: 20 pages, lots of figure

    On the dynamics of the glass transition on Bethe lattices

    Full text link
    The Glauber dynamics of disordered spin models with multi-spin interactions on sparse random graphs (Bethe lattices) is investigated. Such models undergo a dynamical glass transition upon decreasing the temperature or increasing the degree of constrainedness. Our analysis is based upon a detailed study of large scale rearrangements which control the slow dynamics of the system close to the dynamical transition. Particular attention is devoted to the neighborhood of a zero temperature tricritical point. Both the approach and several key results are conjectured to be valid in a considerably more general context.Comment: 56 pages, 38 eps figure

    A hard-sphere model on generalized Bethe lattices: Statics

    Full text link
    We analyze the phase diagram of a model of hard spheres of chemical radius one, which is defined over a generalized Bethe lattice containing short loops. We find a liquid, two different crystalline, a glassy and an unusual crystalline glassy phase. Special attention is also paid to the close-packing limit in the glassy phase. All analytical results are cross-checked by numerical Monte-Carlo simulations.Comment: 24 pages, revised versio

    Spin models on random graphs with controlled topologies beyond degree constraints

    Full text link
    We study Ising spin models on finitely connected random interaction graphs which are drawn from an ensemble in which not only the degree distribution p(k)p(k) can be chosen arbitrarily, but which allows for further fine-tuning of the topology via preferential attachment of edges on the basis of an arbitrary function Q(k,k') of the degrees of the vertices involved. We solve these models using finite connectivity equilibrium replica theory, within the replica symmetric ansatz. In our ensemble of graphs, phase diagrams of the spin system are found to depend no longer only on the chosen degree distribution, but also on the choice made for Q(k,k'). The increased ability to control interaction topology in solvable models beyond prescribing only the degree distribution of the interaction graph enables a more accurate modeling of real-world interacting particle systems by spin systems on suitably defined random graphs.Comment: 21 pages, 4 figures, submitted to J Phys

    An algorithm for counting circuits: application to real-world and random graphs

    Full text link
    We introduce an algorithm which estimates the number of circuits in a graph as a function of their length. This approach provides analytical results for the typical entropy of circuits in sparse random graphs. When applied to real-world networks, it allows to estimate exponentially large numbers of circuits in polynomial time. We illustrate the method by studying a graph of the Internet structure.Comment: 7 pages, 3 figures, minor corrections, accepted versio

    Cavity approach to the first eigenvalue problem in a family of symmetric random sparse matrices

    Full text link
    A methodology to analyze the properties of the first (largest) eigenvalue and its eigenvector is developed for large symmetric random sparse matrices utilizing the cavity method of statistical mechanics. Under a tree approximation, which is plausible for infinitely large systems, in conjunction with the introduction of a Lagrange multiplier for constraining the length of the eigenvector, the eigenvalue problem is reduced to a bunch of optimization problems of a quadratic function of a single variable, and the coefficients of the first and the second order terms of the functions act as cavity fields that are handled in cavity analysis. We show that the first eigenvalue is determined in such a way that the distribution of the cavity fields has a finite value for the second order moment with respect to the cavity fields of the first order coefficient. The validity and utility of the developed methodology are examined by applying it to two analytically solvable and one simple but non-trivial examples in conjunction with numerical justification.Comment: 11 pages, 4 figures, to be presented at IW-SMI2010, Kyoto, March 7-10, 201

    Phase Transitions and Computational Difficulty in Random Constraint Satisfaction Problems

    Full text link
    We review the understanding of the random constraint satisfaction problems, focusing on the q-coloring of large random graphs, that has been achieved using the cavity method of the physicists. We also discuss the properties of the phase diagram in temperature, the connections with the glass transition phenomenology in physics, and the related algorithmic issues.Comment: 10 pages, Proceedings of the International Workshop on Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200
    corecore