6,260 research outputs found
Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.
In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII
Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling
PURPOSE: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. METHODS: Because the superior-inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation of the SI motion with left-right and anterior-posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors' simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. RESULTS: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior projections over more than 60° appear to be necessary for reliable estimations. The mean 3D RMSE during beam delivery after the simple linear model had established with a prior 90° projection data was 0.42 mm for VMAT and 0.45 mm for IMRT. CONCLUSIONS: The proposed method does not require any internal/external correlation or statistical modeling to estimate the target trajectory and can be used for both retrospective image-guided radiotherapy with CBCT projection images and real-time target position monitoring for respiratory gating or tracking.NHMRC, National Research Foundation of Kore
Unitary representations of nilpotent super Lie groups
We show that irreducible unitary representations of nilpotent super Lie
groups can be obtained by induction from a distinguished class of sub super Lie
groups. These sub super Lie groups are natural analogues of polarizing
subgroups that appear in classical Kirillov theory. We obtain a concrete
geometric parametrization of irreducible unitary representations by nonnegative
definite coadjoint orbits. As an application, we prove an analytic
generalization of the Stone-von Neumann theorem for Heisenberg-Clifford super
Lie groups
Manipulating the torsion of molecules by strong laser pulses
A proof-of-principle experiment is reported, where torsional motion of a
molecule, consisting of a pair of phenyl rings, is induced by strong laser
pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis,
connecting the two phenyl rings, allowing a perpendicularly polarized, intense
femtosecond pulse to initiate torsional motion accompanied by an overall
rotation about the fixed axis. The induced motion is monitored by femtosecond
time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for
and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the
presentation of the material; Correction of ion labels in Fig. 2(a
Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}
Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied
during room temperature annealing following heat treatment. The superconducting
T_c, dc resistivity, and low-energy optical conductivity recover slowly,
implying a long relaxation time for the carrier density. Short relaxation times
are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon
-- and the charge transfer band. Monte Carlo simulations suggest that these two
relaxation rates are related to two length scales corresponding to local oxygen
ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure
Bivariate genetic modelling of the response to an oral glucose tolerance challenge: A gene x environment interaction approach
AIMS/HYPOTHESIS: Twin and family studies have shown the importance of genetic factors influencing fasting and 2 h glucose and insulin levels. However, the genetics of the physiological response to a glucose load has not been thoroughly investigated. METHODS: We studied 580 monozygotic and 1,937 dizygotic British female twins from the Twins UK Registry. The effects of genetic and environmental factors on fasting and 2 h glucose and insulin levels were estimated using univariate genetic modelling. Bivariate model fitting was used to investigate the glucose and insulin responses to a glucose load, i.e. an OGTT. RESULTS: The genetic effect on fasting and 2 h glucose and insulin levels ranged between 40% and 56% after adjustment for age and BMI. Exposure to a glucose load resulted in the emergence of novel genetic effects on 2 h glucose independent of the fasting level, accounting for about 55% of its heritability. For 2 h insulin, the effect of the same genes that already influenced fasting insulin was amplified by about 30%. CONCLUSIONS/INTERPRETATION: Exposure to a glucose challenge uncovers new genetic variance for glucose and amplifies the effects of genes that already influence the fasting insulin level. Finding the genes acting on 2 h glucose independently of fasting glucose may offer new aetiological insight into the risk of cardiovascular events and death from all causes
- …