959 research outputs found

    Renormalization of f-levels away from the Fermi energy in electron excitation spectroscopies: Density functional results of Nd2x_{2-x}Cex_xCuO4_4

    Full text link
    Relaxation energies for photoemission, when an occupied electronic state is excited, and for inverse photoemission, when an empty state is filled, are calculated within the density functional theory with application to Nd2x_{2-x}Cex_xCuO4_4. The associated relaxation energies are obtained by computing differences in total energies between the ground state and an excited state in which one hole or electron is added into the system. The relaxation energies of f-electrons are found to be of the order of several eV's, indicating that f-bands will appear substantially away from the Fermi energy (EFE_F) in their spectroscopic images, even if these bands lie near EFE_F. Our analysis explains why it would be difficult to observe f electrons at the EFE_F even in the absence of strong electronic correlations.Comment: 6 pages, 1 figure, 1 tabl

    A competing order scenario of two-gap behavior in hole doped cuprates

    Full text link
    Angle-dependent studies of the gap function provide evidence for the coexistence of two distinct gaps in hole doped cuprates, where the gap near the nodal direction scales with the superconducting transition temperature TcT_c, while that in the antinodal direction scales with the pseudogap temperature. We present model calculations which show that most of the characteristic features observed in the recent angle-resolved photoemission spectroscopy (ARPES) as well as scanning tunneling microscopy (STM) two-gap studies are consistent with a scenario in which the pseudogap has a non-superconducting origin in a competing phase. Our analysis indicates that, near optimal doping, superconductivity can quench the competing order at low temperatures, and that some of the key differences observed between the STM and ARPES results can give insight into the superlattice symmetry of the competing order.Comment: 9 pages, 7 fig

    Direct observation of localization in the minority-spin-band electrons of magnetite below the Verwey temperature

    Full text link
    Two-dimensional spin-uncompensated momentum density distributions, ρs2D(p)\rho_{\rm s}^{2D}({\bf p})s, were reconstructed in magnetite at 12K and 300K from several measured directional magnetic Compton profiles. Mechanical de-twinning was used to overcome severe twinning in the single crystal sample below the Verwey transition. The reconstructed ρs2D(p)\rho_{\rm s}^{2D}({\bf p}) in the first Brillouin zone changes from being negative at 300 K to positive at 12 K. This result provides the first clear evidence that electrons with low momenta in the minority spin bands in magnetite are localized below the Verwey transition temperature.Comment: 13 pages, 4 figures, accepted in Physical Review

    A Novel 2D Folding Technique for Enhancing Fermi Surface Signatures in the Momentum Density: Application to Compton Scattering Data from an Al-3at%Li Disordered Alloy

    Full text link
    We present a novel technique for enhancing Fermi surface (FS) signatures in the 2D distribution obtained after the 3D momentum density in a crystal is projected along a specific direction in momentum space. These results are useful for investigating fermiology via high resolution Compton scattering and positron annihilation spectroscopies. We focus on the particular case of the (110) projection in an fcc crystal where the standard approach based on the use of the Lock-Crisp-West (LCW) folding theorem fails to give a clear FS image due to the strong overlap with FS images obtained through projection from higher Brillouin zones. We show how these superposed FS images can be disentangled by using a selected set of reciprocal lattice vectors in the folding process. The applicability of our partial folding scheme is illustrated by considering Compton spectra from an Al-3at%Li disordered alloy single crystal. For this purpose, high resolution Compton profiles along nine directions in the (110) plane were measured. Corresponding highly accurate theoretical profiles in Al-3at%Li were computed within the local density approximation (LDA)-based Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) first-principles framework. A good level of overall accord between theory and experiment is obtained, some expected discrepancies reflecting electron correlation effects notwithstanding, and the partial folding scheme is shown to yield a clear FS image in the (110) plane in Al-3%Li.Comment: 24 pages, 8 figures, to appear in Phys. Rev.

    A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al

    Full text link
    We report high-resolution Compton profiles (CP's) of Al along the three principal symmetry directions at a photon energy of 59.38 keV, together with corresponding highly accurate theoretical profiles obtained within the local-density approximation (LDA) based band-theory framework. A good accord between theory and experiment is found with respect to the overall shapes of the CP's, their first and second derivatives, as well as the anisotropies in the CP's defined as differences between pairs of various CP's. There are however discrepancies in that, in comparison to the LDA predictions, the measured profiles are lower at low momenta, show a Fermi cutoff which is broader, and display a tail which is higher at momenta above the Fermi momentum. A number of simple model calculations are carried out in order to gain insight into the nature of the underlying 3D momentum density in Al, and the role of the Fermi surface in inducing fine structure in the CP's. The present results when compared with those on Li show clearly that the size of discrepancies between theoretical and experimental CP's is markedly smaller in Al than in Li. This indicates that, with increasing electron density, the conventional picture of the electron gas becomes more representative of the momentum density and that shortcomings of the LDA framework in describing the electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl

    Bulk Fermi surface and momentum density in heavily doped La2x_{2-x}Srx_xCuO4_4 using high resolution Compton scattering and positron annihilation spectroscopies

    Get PDF
    We have observed the bulk Fermi surface (FS) in an overdoped (xx=0.3) single crystal of La2x_{2-x}Srx_xCuO4_4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and the DFT based computations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either the theory or the experiment.Comment: 9 pages, 8 figure
    corecore