1,023 research outputs found

    Technologies for 3D Heterogeneous Integration

    Full text link
    3D-Integration is a promising technology towards higher interconnect densities and shorter wiring lengths between multiple chip stacks, thus achieving a very high performance level combined with low power consumption. This technology also offers the possibility to build up systems with high complexity just by combining devices of different technologies. For ultra thin silicon is the base of this integration technology, the fundamental processing steps will be described, as well as appropriate handling concepts. Three main concepts for 3D integration have been developed at IZM. The approach with the greatest flexibility called Inter Chip Via - Solid Liquid Interdiffusion (ICV-SLID) is introduced. This is a chip-to-wafer stacking technology which combines the advantages of the Inter Chip Via (ICV) process and the solid-liquid-interdiffusion technique (SLID) of copper and tin. The fully modular ICV-SLID concept allows the formation of multiple device stacks. A test chip was designed and the total process sequence of the ICV-SLID technology for the realization of a three-layer chip-to-wafer stack was demonstrated. The proposed wafer-level 3D integration concept has the potential for low cost fabrication of multi-layer high-performance 3D-SoCs and is well suited as a replacement for embedded technologies based on monolithic integration. To address yield issues a wafer-level chip-scale handling is presented as well, to select known-good dies and work on them with wafer-level process sequences before joining them to integrated stacks.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Coherent Control of Trapped Bosons

    Full text link
    We investigate the quantum behavior of a mesoscopic two-boson system produced by number-squeezing ultracold gases of alkali metal atoms. The quantum Poincare maps of the wavefunctions are affected by chaos in those regions of the phase space where the classical dynamics produces features that are comparable to hbar. We also investigate the possibility for quantum control in the dynamics of excitations in these systems. Controlled excitations are mediated by pulsed signals that cause Stimulated Raman Adiabatic passage (STIRAP) from the ground state to a state of higher energy. The dynamics of this transition is affected by chaos caused by the pulses in certain regions of the phase space. A transition to chaos can thus provide a method of controlling STIRAP.Comment: 17 figures, Appended a paragraph on section 1 and explained details behind the hamiltonian on section

    Engineering many-body quantum dynamics by disorder

    Full text link
    Going beyond the currently investigated regimes in experiments on quantum transport of ultracold atoms in disordered potentials, we predict a crossover between regular and quantum-chaotic dynamics when varying the strength of disorder. Our spectral approach is based on the Bose-Hubbard model describing interacting atoms in deep random potentials. The predicted crossover from localized to diffusive dynamics depends on the simultaneous presence of interactions and disorder, and can be verified in the laboratory by monitoring the evolution of typical experimental initial states.Comment: 4 pages, 4 figures (improved version), to be published in PR

    Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes

    Full text link
    In this paper, we study the phase structure and equilibrium state space geometry of charged topological Gauss-Bonnet black holes in dd-dimensional anti-de Sitter spacetime. Several critical points are obtained in the canonical ensemble, and the critical phenomena and critical exponents near them are examined. We find that the phase structures and critical phenomena drastically depend on the cosmological constant Λ\Lambda and dimensionality dd. The result also shows that there exists an analogy between the black hole and the van der Waals liquid gas system. Moreover, we explore the phase transition and possible property of the microstructure using the state space geometry. It is found that the Ruppeiner curvature diverges exactly at the points where the heat capacity at constant charge of the black hole diverges. This black hole is also found to be a multiple system, i.e., it is similar to the ideal gas of fermions in some range of the parameters, while to the ideal gas of bosons in another range.Comment: 17 pages, 8 figures, 3 table

    Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method

    Full text link
    We derive a coarse-grained equation of motion of a number density by applying the projection operator method to a non-relativistic model. The derived equation is an integrodifferential equation and contains the memory effect. The equation is consistent with causality and the sum rule associated with the number conservation in the low momentum limit, in contrast to usual acausal diffusion equations given by using the Fick's law. After employing the Markov approximation, we find that the equation has the similar form to the causal diffusion equation. Our result suggests that current-current correlations are not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.

    Occurrence of normal and anomalous diffusion in polygonal billiard channels

    Full text link
    From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e. when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t log t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e. power-law growth with an exponent larger than 1. This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.Comment: 9 pages, 15 figures. Revised after referee reports: redrawn figures, additional comments. Some higher quality figures available at http://www.fis.unam.mx/~dsander

    Critical Phenomena and Thermodynamic Geometry of RN-AdS Black Holes

    Full text link
    The phase transition of Reissner-Nordstr\"om black holes in (n+1)(n+1)-dimensional anti-de Sitter spacetime is studied in details using the thermodynamic analogy between a RN-AdS black hole and a van der Waals liquid gas system. We first investigate critical phenomena of the RN-AdS black hole. The critical exponents of relevant thermodynamical quantities are evaluated. We find identical exponents for a RN-AdS black hole and a Van der Waals liquid gas system. This suggests a possible universality in the phase transitions of these systems. We finally study the thermodynamic behavior using the equilibrium thermodynamic state space geometry and find that the scalar curvature diverges exactly at the van der Waals-like critical point where the heat capacity at constant charge of the black hole diverges.Comment: 18 pages, 5 figure

    Distribution and Excretion of TEGDMA in Guinea Pigs and Mice

    Get PDF
    The monomer triethyleneglycoldimethacrylate (TEGDMA) is used as a diluent in many resin-based dental materials. It was previously shown in vitro that TEGDMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of 14C-TEGDMA applied via gastric, intradermal, and intravenous administration at dose levels well above those encountered in dental care were examined in vivo in guinea pigs and mice as a test of the hypothesis that TEGDMA reaches cytotoxic levels in mammalian tissues. 14C-TEGDMA was taken up rapidly from the stomach and small intestine after gastric administration in both species and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as 14 CO2. The peak equivalent TEGDMA levels in all mouse and guinea pig tissues examined were at least 1000-fold less than known toxic levels. The study therefore did not support the hypothesis
    corecore