45 research outputs found

    Disease suppressive soilless culture systems; characterisation of its microflora

    Get PDF
    The trend in glasshouse horticulture has always been to start culture systems as aseptic as possible. However, several root diseases still cause problems under these conditions. The present paper shows the importance of the microflora to suppress Pythium aphanidermatum, a fungal root pathogen which is a serious threat in cucumber. Introduced single antagonists as well as the indigenous microflora suppressed pythium root and crown rot. Pseudomonas fluorescens, Streptomyces griseoviridis, Pythium oligandrum, and 2 isolates of Trichoderma harzianum reduced the disease occurrence by 60 ␘r more in several, but not all, of the experiments. The indigenous microflora showed a very constant disease suppression of 50 to 100 &Eth;This was tested in experiments where P. aphanidermatum was added to sterilised and non-sterilised rockwool, and to sterilised rockwool that had been recolonised with the original microflora. Suppressiveness correlated with the number of filamentous actinomycetes present in the nutrient solution in the rockwool slabs. If a beneficial microflora is present in the cropping system, it should not be disturbed or eradicated by treatments such as disinfection of the recirculated nutrient solution. Therefore, the effects of different disinfection procedures on the composition of the microflora were compared. Numbers of filamentous actinomycetes in the nutrient solution in the tank after the disinfection treatment were highest without disinfection, intermediate after slow filtration, and lowest after UV treatment. Numbers of actinomycetes in the slabs, i.e. around the roots, were not distinctly different between the treatments. The implication of potential shifts in the microbial populations due to certain treatments for the disease development is not known. Increased knowledge on the beneficial microflora and the treatments that influence the composition of such a microflora, will stimulate the exploitation of microbially balanced and optimised soilless culture systems

    Number and mode of inheritance of QTL influencing backfat thickness on SSC2p in Sino-European pig pedigrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the pig, multiple QTL associated with growth and fatness traits have been mapped to chromosome 2 (SSC2) and among these, at least one shows paternal expression due to the IGF2-intron3-G3072A substitution. Previously published results on the position and imprinting status of this QTL disagree between analyses from French and Dutch F2 crossbred pig populations obtained with the same breeds (Meishan crossed with Large White or Landrace).</p> <p>Methods</p> <p>To study the role of paternal and maternal alleles at the IGF2 locus and to test the hypothesis of a second QTL affecting backfat thickness on the short arm of SSC2 (SSC2p), a QTL mapping analysis was carried out on a combined pedigree including both the French and Dutch F2 populations, on the progeny of F1 males that were heterozygous (A/G) and homozygous (G/G) at the IGF2 locus. Simulations were performed to clarify the relations between the two QTL and to understand to what extent they can explain the discrepancies previously reported.</p> <p>Results</p> <p>The QTL analyses showed the segregation of at least two QTL on chromosome 2 in both pedigrees, i.e. the IGF2 locus and a second QTL segregating at least in the G/G F1 males and located between positions 30 and 51 cM. Statistical analyses highlighted that the maternally inherited allele at the IGF2 locus had a significant effect but simulation studies showed that this is probably a spurious effect due to the segregation of the second QTL.</p> <p>Conclusions</p> <p>Our results show that two QTL on SSC2p affect backfat thickness. Differences in the pedigree structures and in the number of heterozygous females at the IGF2 locus result in different imprinting statuses in the two pedigrees studied. The spurious effect observed when a maternally allele is present at the IGF2 locus, is in fact due to the presence of a second closely located QTL. This work confirms that pig chromosome 2 is a major region associated with fattening traits.</p

    Overzicht van het onderzoek over schimmelvaatziekten bij anjers in de periode 1939 - 1983

    No full text
    Overzicht ten behoeve van de kweker, van de geschiedenis van het vaatziekte-onderzoek bij anjers op het Proefstation voor de Bloemisteri

    Grondontsmetting in het boomkwekerijcentrum Boskoop

    No full text
    corecore