11,164 research outputs found

    The Spin Stiffness and the Transverse Susceptibility of the Half-filled Hubbard Model

    Full text link
    The T=0T=0 spin stiffness ρs\rho _{s} and the transverse susceptibility χ\chi _{\perp } of the square lattice half-filled Hubbard model are calculated as a function of the Hubbard parameter ratio U/tU/t by series expansions around the Ising limit. We find that the calculated spin-stiffness, transverse susceptibility, and sublattice magnetization for the Hubbard model smoothly approach the Heisenberg values for large U/tU/t. The results are compared for different U/tU/t with RPA and other numerical studies.Comment: 9 Revtex pages, 3 Postscript figures, Europhys. Lett. in pres

    Outflow and dense gas emission from massive Infrared Dark Clouds

    Full text link
    Infrared Dark Clouds are expected to harbor sources in different, very young evolutionary stages. To better characterize these differences, we observed a sample of 43 massive Infrared Dark Clouds, originally selected as candidate high-mass starless cores, with the IRAM 30m telescope covering spectral line tracers of low-density gas, high-density gas, molecular outflows/jets and temperature effects. The SiO(2-1) observations reveal detections toward 18 sources. Assuming that SiO is exclusively produced by sputtering from dust grains, this implies that at least in 40% of this sample star formation is on-going. A broad range of SiO line-widths is observed (between 2.2 and 65km/s), and we discuss potential origins for this velocity spread. While the low-density tracers 12CO(2-1) and 13CO(1-0) are detected in several velocity components, the high-density tracer H13CO+(1--0) generally shows only a single velocity component and is hence well suited for kinematic distance estimates of IRDCs. Furthermore, the H13CO+ line-width is on average 1.5 times larger than that of previously observed NH3(1,1). This is indicative of more motion at the denser core centers, either due to turbulence or beginning star formation activity. In addition, we detect CH3CN toward only six sources whereas CH3OH is observed toward approximately 40% of the sample. Estimates of the CH3CN and CH3OH abundances are low with average values of 1.2x10^{-10} and 4.3x10^{-10}, respectively. These results are consistent with chemical models at the earliest evolutionary stages of high-mass star formation. Furthermore, the CH3OH abundances compare well to recently reported values for low-mass starless cores.Comment: 22 pages (ApJ referee style), 7 figures, accepted for Ap

    ELID grinding of silicon wafers: a literature review

    Get PDF
    Silicon wafers are the most widely used substrates for fabricating integrated circuits. There have been continuous demands for higher quality silicon wafers with lower prices, and it becomes more and more difficult to meet these demands using current manufacturing processes. In recent years, research has been done on electrolytic in-process dressing (ELID) grinding of silicon wafers to explore its potential to become a viable manufacturing process. This paper reviews the literature on ELID grinding, covering its set-ups, wheel dressing mechanism, and experimental results. It also discusses the technical barriers that have to be overcome before ELID grinding can be used in manufacturing

    Kaluza-Klein dimensional reduction and Gauss-Codazzi-Ricci equations

    Full text link
    In this paper we imitate the traditional method which is used customarily in the General Relativity and some mathematical literatures to derive the Gauss-Codazzi-Ricci equations for dimensional reduction. It would be more distinct concerning geometric meaning than the vielbein method. Especially, if the lower dimensional metric is independent of reduced dimensions the counterpart of the symmetric extrinsic curvature is proportional to the antisymmetric Kaluza-Klein gauge field strength. For isometry group of internal space, the SO(n) symmetry and SU(n) symmetry are discussed. And the Kaluza-Klein instanton is also enquired.Comment: 15 page

    Conditional Mass Functions and Merger Rates of Dark Matter Halos in the Ellipsoidal Collapse Model

    Full text link
    Analytic models based on spherical and ellipsoidal gravitational collapse have been used to derive the mass functions of dark matter halos and their progenitors (the conditional mass function). The ellipsoidal model generally provides a better match to simulation results, but there has been no simple analytic expression in this model for the conditional mass function that is accurate for small time steps, a limit that is important for generating halo merger trees and computing halo merger rates. We remedy the situation by deriving accurate analytic formulae for the first-crossing distribution, the conditional mass function, and the halo merger rate in the ellipsoidal collapse model in the limit of small look-back times. We show that our formulae provide a closer match to the Millennium simulation results than those in the spherical collapse model and the ellipsoidal model of Sheth & Tormen (2002).Comment: 5 pages, 3 figures, accepted by MNRAS letter

    Small-scale CMB Temperature and Polarization Anisotropies due to Patchy Reionization

    Full text link
    We study contributions from inhomogeneous (patchy) reionization to arcminute scale (1000<<10,0001000 < \ell < 10,000) cosmic microwave background (CMB) anisotropies. We show that inhomogeneities in the ionization fraction, rather than in the mean density, dominate both the temperature and the polarization power spectra. Depending on the ionization history and the clustering bias of the ionizing sources, we find that rms temperature fluctuations range from 2 μ\muK to 8 μ\muK and the corresponding values for polarization are over two orders of magnitude smaller. Reionization can significantly bias cosmological parameter estimates and degrade gravitational lensing potential reconstruction from temperature maps but not from polarization maps. We demonstrate that a simple modeling of the reionization temperature power spectrum may be sufficient to remove the parameter bias. The high-\ell temperature power spectrum will contain some limited information about the sources of reionization.Comment: 11 pages, 8 figures. Minor changes to match version accepted by Ap

    Effects of Ellipticity and Shear on Gravitational Lens Statistics

    Full text link
    We study the effects of ellipticity in lens galaxies and external tidal shear from neighboring objects on the statistics of strong gravitational lenses. For isothermal lens galaxies normalized so that the Einstein radius is independent of ellipticity and shear, ellipticity {\it reduces} the lensing cross section slightly, and shear leaves it unchanged. Ellipticity and shear can significantly enhance the magnification bias, but only if the luminosity function of background sources is steep. Realistic distributions of ellipticity and shear {\it lower} the total optical depth by a few percent for most source luminosity functions, and increase the optical depth only for steep luminosity functions. The boost in the optical depth is noticeable (>5%) only for surveys limited to the brightest quasars (L/L_* > 10). Ellipticity and shear broaden the distribution of lens image separations but do not affect the mean. Ellipticity and shear naturally increase the abundance of quadruple lenses relative to double lenses, especially for steep source luminosity functions, but the effect is not enough (by itself) to explain the observed quadruple-to-double ratio. With such small changes to the optical depth and image separation distribution, ellipticity and shear have a small effect on cosmological constraints from lens statistics: neglecting the two leads to biases of just Delta Omega_M = 0.00 \pm 0.01 and Delta Omega_Lambda = -0.02 \pm 0.01 (where the errorbars represent statistical uncertainties in our calculations).Comment: Optical depth normalization discussed. Matches the published versio
    corecore