911 research outputs found

    Tectonics of the Lepontine Alps: ductile thrusting and folding in the deepest tectonic levels of the Central Alps

    Get PDF
    The Lepontine dome represents a unique region in the arc of the Central and Western Alps, where complex fold structures of upper amphibolite facies grade of the deepest stage of the orogenic belt are exposed in a tectonic half-window. The NW-verging Mont Blanc, Aar und Gotthard basement folds and the Lower Penninic gneiss nappes of the Central Alps were formed by ductile detachment of the upper European crust during its Late Eocene–Early Oligocene SE-directed underthrust below the upper Penninic and Austroalpine thrusts and the Adriatic plate. Four underthrust zones are distinguished in the NW-verging stack of Alpine fold nappes and thrusts: the Canavese, Piemont, Valais and Adula zones. Up to three schistosities S1–S3, folds F1–F3 and a stretching lineation XI with top-to-NW shear indicators were developed in the F1–F3 fold nappes. Spectacular F4 transverse folds, the SW-verging Verzasca, Maggia, Ziccher, Alpe Bosa and Wandfluhhorn anticlines and synclines overprint the Alpine nappe stack. Their formation under amphibolite facies grade was related to late ductile folding of the southern nappe roots during dextral displacement of the Adriatic indenter. The transverse folding F4 was followed since 30 Ma by the pull-apart exhumation and erosion of the Lepontine dome. This occurred coevally with the formation of the dextral ductile Simplon shear zone, the S-verging backfolding F5 and the formation of the southern steep belt. Exhumation continued after 18 Ma with movement on the brittle Rhone-Simplon detachment, accompanied by the N-, NW- and W-directed Helvetic and Dauphiné thrusts. The dextral shear is dated by the 29–25 Ma crustal-derived aplite and pegmatite intrusions in the southern steep belt. The cooling by uplift and erosion of the Tertiary migmatites of the Bellinzona region occurred between 22 and 18 Ma followed by the exhumation of the Toce dome on the brittle Rhone–Simplon fault since 18 Ma

    Pappostipa atacamensis (Parodi) Romaschenko

    Get PDF
    Quebrada de PlazapublishedVersio

    Perturbation of a lattice spectral band by a nearby resonance

    Full text link
    A soluble model of weakly coupled "molecular" and "nuclear" Hamiltonians is studied in order to exhibit explicitly the mechanism leading to the enhancement of fusion probability in case of a narrow near-threshold nuclear resonance. We, further, consider molecular cells of this type being arranged in lattice structures. It is shown that if the real part of the narrow nuclear resonance lies within the molecular band generated by the intercellular interaction, an enhancement, proportional to the inverse width of the nuclear resonance, is to be expected.Comment: RevTeX, 2 figures within the file. In May 2000 the title changed and some minor corrections have been don

    Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields

    Full text link
    We show how to approximate Dirac dynamics for electronic initial states by semi- and non-relativistic dynamics. To leading order, these are generated by the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is related to m2+ξ2\sqrt{m^2 + \xi^2} and ξ2/2m\xi^2 / 2m, respectively. Higher-order corrections can in principle be computed to any order in the small parameter v/c which is the ratio of typical speeds to the speed of light. Our results imply the dynamics for electronic and positronic states decouple to any order in v/c << 1. To decide whether to get semi- or non-relativistic effective dynamics, one needs to choose a scaling for the kinetic momentum operator. Then the effective dynamics are derived using space-adiabatic perturbation theory by Panati et. al with the novel input of a magnetic pseudodifferential calculus adapted to either the semi- or non-relativistic scaling.Comment: 42 page

    Direct Interactions in Relativistic Statistical Mechanics

    Get PDF
    Directly interacting particles are considered in the multitime formalism of predictive relativistic mechanics. When the equations of motion leave a phase-space volume invariant, it turns out that the phase average of any first integral, covariantly defined as a flux across a 7n7n-dimensional surface, is conserved. The Hamiltonian case is discussed, a class of simple models is exhibited, and a tentative definition of equilibrium is proposed.Comment: Plain Tex file, 26 page

    Dynamics of Quantum Collapse in Energy Measurements

    Full text link
    The influence of continuous measurements of energy with a finite accuracy is studied in various quantum systems through a restriction of the Feynman path-integrals around the measurement result. The method, which is equivalent to consider an effective Schr\"odinger equation with a non-Hermitian Hamiltonian, allows one to study the dynamics of the wavefunction collapse. A numerical algorithm for solving the effective Schr\"odinger equation is developed and checked in the case of a harmonic oscillator. The situations, of physical interest, of a two-level system and of a metastable quantum-well are then discussed. In the first case the Zeno inhibition observed in quantum optics experiments is recovered and extended to nonresonant transitions, in the second one we propose to observe inhibition of spontaneous decay in mesoscopic heterostructures. In all the considered examples the effect of the continuous measurement of energy is a freezing of the evolution of the system proportional to the accuracy of the measurement itself.Comment: 20 pages with figures, compressed and uuencoded ps fil
    corecore