845 research outputs found

    Stabilized parametric Cooper-pair pumping in a linear array of coupled Josephson junctions

    Full text link
    We present an experimentally realizable stabilized charge pumping scheme in a linear array of Cooper-pair boxes. The system design intrinsically protects the pumping mechanism from severe errors, especially current reversal and spontaneous charge excitation. The quantum Zeno effect is implemented to further diminish pumping errors. The characteristics of this scheme are considered from the perspective of improving the current standard. Such an improvement bears relevence to the closure of the so-called measurement triangle (see D. Averin [Nature 434, 285 (2005)]).Comment: Title changed, other corrections and modifications requested from Phys. Rev. Let

    Accuracy of a mechanical single electron shuttle

    Full text link
    Motivated by recent experiments, we calculate both the average current and the current fluctuations for a metallic island which oscillates between two symmetric electrodes. Electrons can only tunnel on or off the island when it is close to one of the electrodes. Using a Master equation we investigate the accuracy of such an electron shuttle both analytically and numerically. It is shown that optimum operation is reached when the contact time is much larger than the RC-time.Comment: RevTeX, 8 pages, 5 figure

    Nonadiabatic Electron Pumping: Maximal Current with Minimal Noise

    Full text link
    The noise properties of pump currents through an open double quantum dot setup with non-adiabatic ac driving are investigated. Driving frequencies close to the internal resonances of the double dot-system mark the optimal working points at which the pump current assumes a maximum while its noise power possesses a remarkably low minimum. A rotating-wave approximation provides analytical expressions for the current and its noise power and allows to optimize the noise characteristics. The analytical results are compared to numerical results from a Floquet transport theory.Comment: 4 pages, 3 figures, replaced Fig. 1, added new inset in Fig. 2, extended paragraph on symmetry consideration

    Influence of Magnetic Field on Effective Electron-Electron Interactions in a Copper Wire

    Full text link
    We have measured in a copper wire the energy exchange rate between quasiparticles as a function of the applied magnetic field. We find that the effective electron-electron interaction is strongly modified by the magnetic field, suggesting that magnetic impurities play a role on the interaction processes.Comment: latex anthore.tex, 8 files, 6 figures, 7 pages in: Proceedings of the XXXVIth Rencontres de Moriond `Electronic Correlations: From Meso- to Nano-physics' Les Arcs, France January 20-27, 2001 [SPEC-S01/027

    Phase controlled superconducting proximity effect probed by tunneling spectroscopy

    Get PDF
    Using a dual-mode STM-AFM microscope operating below 50mK we measured the Local Density of States (LDoS) along small normal wires connected at both ends to superconductors with different phases. We observe that a uniform minigap can develop in the whole normal wire and in the superconductors near the interfaces. The minigap depends periodically on the phase difference. The quasiclassical theory of superconductivity applied to a simplified 1D model geometry accounts well for the data.Comment: Accepted for publication in Physical Review Letter

    Magnetic-field-dependent quasiparticle energy relaxation in mesoscopic wires

    Full text link
    In order to find out if magnetic impurities can mediate interactions between quasiparticles in metals, we have measured the effect of a magnetic field B on the energy distribution function f(E) of quasiparticles in two silver wires driven out-of-equilibrium by a bias voltage U. In a sample showing sharp distributions at B=0, no magnetic field effect is found, whereas in the other sample, rounded distributions at low magnetic field get sharper as B is increased, with a characteristic field proportional to U. Comparison is made with recent calculations of the effect of magnetic-impurities-mediated interactions taking into account Kondo physics.Comment: 4 pages, 3 figures, to be published in Physical Review Letter

    Hierarchical Wigner Crystal at the Edge of Quantum Hall Bar

    Full text link
    We show that quasiholes persist near the edge of incompressible Quantum Hall state forming a Wigner structure. The average density of quasiholes is fixed by electrostatics and decreases slowly with increasing distance from the edge. As we see from elementary reasoning, their specific arrangement can not be a regular Wigner lattice and shows a complex hierarchical structure of dislocations.Comment: LaTEX file. Ps figures upon reques

    Supercurrent Spectroscopy of Andreev States

    Full text link
    We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasiparticle excitations are induced by a broadband on-chip microwave source and detected by measuring changes in the supercurrent flowing through the atomic contact. Since microwave photons excite quasiparticles in pairs, two types of transitions are observed: Andreev transitions, which consists of putting two quasiparticles in an Andreev level, and transitions to odd states with a single quasiparticle in an Andreev level and the other one in the continuum. In contrast to absorption spectroscopy, supercurrent spectroscopy allows detection of long-lived odd states.Comment: typos correcte

    Theory of microwave spectroscopy of Andreev bound states with a Josephson junction

    Get PDF
    We present a microscopic theory for the current through a tunnel Josephson junction coupled to a non-linear environment, which consists of an Andreev two-level system coupled to a harmonic oscillator. It models a recent experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature (London) 499, 312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting atomic-size contact. We find the eigenenergies and eigenstates of the environment and derive the current through the junction due to inelastic Cooper pair tunneling. The current-voltage characteristic reveals the transitions between the Andreev bound states, the excitation of the harmonic mode that hybridizes with the Andreev bound states, as well as multi-photon processes. The calculated spectra are in fair agreement with the experimental data.Comment: 8 pages, 6 figure
    corecore