105 research outputs found

    Temporally delayed linear modelling (TDLM) measures replay in both animals and humans

    Get PDF
    There are rich structures in off-task neural activity which are hypothesised to reflect fundamental computations across a broad spectrum of cognitive functions. Here, we develop an analysis toolkit - Temporal Delayed Linear Modelling (TDLM) for analysing such activity. TDLM is a domain-general method for finding neural sequences that respect a pre-specified transition graph. It combines nonlinear classification and linear temporal modelling to test for statistical regularities in sequences of task-related reactivations. TDLM is developed on the non-invasive neuroimaging data and is designed to take care of confounds and maximize sequence detection ability. Notably, as a linear framework, TDLM can be easily extended, without loss of generality, to capture rodent replay in electrophysiology, including in continuous spaces, as well as addressing second-order inference questions, e.g., its temporal and spatial varying pattern. We hope TDLM will advance a deeper understanding of neural computation and promote a richer convergence between animal and human neuroscience

    Automatic reconstruction of a bacterial regulatory network using Natural Language Processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Manual curation of biological databases, an expensive and labor-intensive process, is essential for high quality integrated data. In this paper we report the implementation of a state-of-the-art Natural Language Processing system that creates computer-readable networks of regulatory interactions directly from different collections of abstracts and full-text papers. Our major aim is to understand how automatic annotation using Text-Mining techniques can complement manual curation of biological databases. We implemented a rule-based system to generate networks from different sets of documents dealing with regulation in <it>Escherichia coli </it>K-12.</p> <p>Results</p> <p>Performance evaluation is based on the most comprehensive transcriptional regulation database for any organism, the manually-curated RegulonDB, 45% of which we were able to recreate automatically. From our automated analysis we were also able to find some new interactions from papers not already curated, or that were missed in the manual filtering and review of the literature. We also put forward a novel Regulatory Interaction Markup Language better suited than SBML for simultaneously representing data of interest for biologists and text miners.</p> <p>Conclusion</p> <p>Manual curation of the output of automatic processing of text is a good way to complement a more detailed review of the literature, either for validating the results of what has been already annotated, or for discovering facts and information that might have been overlooked at the triage or curation stages.</p

    Specific immunotherapy by the sublingual route for respiratory allergy

    Get PDF
    Specific immunotherapy is the only treatment able to act on the causes and not only on the symptoms of respiratory allergy. Sublingual immunotherapy (SLIT) was introduced as an option to subcutaneous immunotherapy (SCIT), the clinical effectiveness of which is partly counterbalanced by the issue of adverse systemic reactions, which occur at a frequency of about 0.2% of injections and 2-5% of the patients and may also be life-threatening. A large number of trials, globally evaluated by several meta-analyses, demonstrated that SLIT is an effective and safe treatment for allergic rhinitis and allergic asthma, severe reactions being extremely rare. The application of SLIT is favored by a good compliance, higher than that reported for SCIT, in which the injections are a major factor for noncompliance because of inconvenience, and by its cost-effectiveness. In fact, a number of studies showed that SLIT may be very beneficial to the healthcare system, especially when its effectiveness persists after treatment withdrawal because of the induced immunologic changes

    GenCLiP: a software program for clustering gene lists by literature profiling and constructing gene co-occurrence networks related to custom keywords

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biomedical researchers often want to explore pathogenesis and pathways regulated by abnormally expressed genes, such as those identified by microarray analyses. Literature mining is an important way to assist in this task. Many literature mining tools are now available. However, few of them allows the user to make manual adjustments to zero in on what he/she wants to know in particular.</p> <p>Results</p> <p>We present our software program, GenCLiP (Gene Cluster with Literature Profiles), which is based on the methods presented by Chaussabel and Sher (<it>Genome Biol </it>2002, 3(10):RESEARCH0055) that search gene lists to identify functional clusters of genes based on up-to-date literature profiling. Four features were added to this previously described method: the ability to 1) manually curate keywords extracted from the literature, 2) search genes and gene co-occurrence networks related to custom keywords, 3) compare analyzed gene results with negative and positive controls generated by GenCLiP, and 4) calculate probabilities that the resulting genes and gene networks are randomly related. In this paper, we show with a set of differentially expressed genes between keloids and normal control, how implementation of functions in GenCLiP successfully identified keywords related to the pathogenesis of keloids and unknown gene pathways involved in the pathogenesis of keloids.</p> <p>Conclusion</p> <p>With regard to the identification of disease-susceptibility genes, GenCLiP allows one to quickly acquire a primary pathogenesis profile and identify pathways involving abnormally expressed genes not previously associated with the disease.</p

    Insights on the Neuromagnetic Representation of Temporal Asymmetry in Human Auditory Cortex.

    Get PDF
    Communication sounds are typically asymmetric in time and human listeners are highly sensitive to this short-term temporal asymmetry. Nevertheless, causal neurophysiological correlates of auditory perceptual asymmetry remain largely elusive to our current analyses and models. Auditory modelling and animal electrophysiological recordings suggest that perceptual asymmetry results from the presence of multiple time scales of temporal integration, central to the auditory periphery. To test this hypothesis we recorded auditory evoked fields (AEF) elicited by asymmetric sounds in humans. We found a strong correlation between perceived tonal salience of ramped and damped sinusoids and the AEFs, as quantified by the amplitude of the N100m dynamics. The N100m amplitude increased with stimulus half-life time, showing a maximum difference between the ramped and damped stimulus for a modulation half-life time of 4 ms which is greatly reduced at 0.5 ms and 32 ms. This behaviour of the N100m closely parallels psychophysical data in a manner that: i) longer half-life times are associated with a stronger tonal percept, and ii) perceptual differences between damped and ramped are maximal at 4 ms half-life time. Interestingly, differences in evoked fields were significantly stronger in the right hemisphere, indicating some degree of hemispheric specialisation. Furthermore, the N100m magnitude was successfully explained by a pitch perception model using multiple scales of temporal integration of auditory nerve activity patterns. This striking correlation between AEFs, perception, and model predictions suggests that the physiological mechanisms involved in the processing of pitch evoked by temporal asymmetric sounds are reflected in the N100m

    The Frequency Following Response (FFR) May Reflect Pitch-Bearing Information But is Not a Direct Representation of Pitch

    Get PDF
    The frequency following response (FFR), a scalp-recorded measure of phase-locked brainstem activity, is often assumed to reflect the pitch of sounds as perceived by humans. In two experiments, we investigated the characteristics of the FFR evoked by complex tones. FFR waveforms to alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. In experiment 1, frequency-shifted complex tones, with all harmonics shifted by the same amount in Hertz, were presented diotically. Only the autocorrelation functions (ACFs) of the subtraction-FFR waveforms showed a peak at a delay shifted in the direction of the expected pitch shifts. This expected pitch shift was also present in the ACFs of the output of an auditory nerve model. In experiment 2, the components of a harmonic complex with harmonic numbers 2, 3, and 4 were presented either to the same ear (“mono”) or the third harmonic was presented contralaterally to the ear receiving the even harmonics (“dichotic”). In the latter case, a pitch corresponding to the missing fundamental was still perceived. Monaural control conditions presenting only the even harmonics (“2 + 4”) or only the third harmonic (“3”) were also tested. Both the subtraction and the addition waveforms showed that (1) the FFR magnitude spectra for “dichotic” were similar to the sum of the spectra for the two monaural control conditions and lacked peaks at the fundamental frequency and other distortion products visible for “mono” and (2) ACFs for “dichotic” were similar to those for “2 + 4” and dissimilar to those for “mono.” The results indicate that the neural responses reflected in the FFR preserve monaural temporal information that may be important for pitch, but provide no evidence for any additional processing over and above that already present in the auditory periphery, and do not directly represent the pitch of dichotic stimuli
    corecore