2,940 research outputs found

    Numerical Approximations Using Chebyshev Polynomial Expansions

    Full text link
    We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi's method). The solutions are exact at these points, apart from round-off computer errors and the convergence of other numerical methods used in connection to solving the linear system of equations. Applications to initial value problems in time-dependent quantum field theory, and second order boundary value problems in fluid dynamics are presented.Comment: minor wording changes, some typos have been eliminate

    Physical Acoustics

    Get PDF
    Contains reports on seven research projects.Office of Naval Research (Contract Nonr-1841(42

    Numerical Evolution of axisymmetric vacuum spacetimes: a code based on the Galerkin method

    Full text link
    We present the first numerical code based on the Galerkin and Collocation methods to integrate the field equations of the Bondi problem. The Galerkin method like all spectral methods provide high accuracy with moderate computational effort. Several numerical tests were performed to verify the issues of convergence, stability and accuracy with promising results. This code opens up several possibilities of applications in more general scenarios for studying the evolution of spacetimes with gravitational waves.Comment: 11 pages, 6 figures. To appear in Classical and Quantum Gravit

    Time-dependent quantum many-body theory of identical bosons in a double well: Early time ballistic interferences of fragmented and number entangled states

    Full text link
    A time-dependent multiconfigurational self-consistent field theory is presented to describe the many-body dynamics of a gas of identical bosonic atoms confined to an external trapping potential at zero temperature from first principles. A set of generalized evolution equations are developed, through the time-dependent variational principle, which account for the complete and self-consistent coupling between the expansion coefficients of each configuration and the underlying one-body wave functions within a restricted two state Fock space basis that includes the full effects of the condensate's mean field as well as atomic correlation. The resulting dynamical equations are a classical Hamiltonian system and, by construction, form a well-defined initial value problem. They are implemented in an efficient numerical algorithm. An example is presented, highlighting the generality of the theory, in which the ballistic expansion of a fragmented condensate ground state is compared to that of a macroscopic quantum superposition state, taken here to be a highly entangled number state, upon releasing the external trapping potential. Strikingly different many-body matter-wave dynamics emerge in each case, accentuating the role of both atomic correlation and mean-field effects in the two condensate states.Comment: 16 pages, 5 figure

    A lattice study of the two-dimensional Wess Zumino model

    Get PDF
    We present results from a numerical simulation of the two-dimensional Euclidean Wess-Zumino model. In the continuum the theory possesses N=1 supersymmetry. The lattice model we employ was analyzed by Golterman and Petcher in \cite{susy} where a perturbative proof was given that the continuum supersymmetric Ward identities are recovered without finite tuning in the limit of vanishing lattice spacing. Our simulations demonstrate the existence of important non-perturbative effects in finite volumes which modify these conclusions. It appears that in certain regions of parameter space the vacuum state can contain solitons corresponding to field configurations which interpolate between different classical vacua. In the background of these solitons supersymmetry is partially broken and a light fermion mode is observed. At fixed coupling the critical mass separating phases of broken and unbroken supersymmetry appears to be volume dependent. We discuss the implications of our results for continuum supersymmetry breaking.Comment: 32 pages, 12 figure

    Tube Models for Rubber-Elastic Systems

    Full text link
    In the first part of the paper we show that the constraining potentials introduced to mimic entanglement effects in Edwards' tube model and Flory's constrained junction model are diagonal in the generalized Rouse modes of the corresponding phantom network. As a consequence, both models can formally be solved exactly for arbitrary connectivity using the recently introduced constrained mode model. In the second part, we solve a double tube model for the confinement of long paths in polymer networks which is partially due to crosslinking and partially due to entanglements. Our model describes a non-trivial crossover between the Warner-Edwards and the Heinrich-Straube tube models. We present results for the macroscopic elastic properties as well as for the microscopic deformations including structure factors.Comment: 15 pages, 8 figures, Macromolecules in pres

    Quenched hadron spectroscopy with improved staggered quark action

    Get PDF
    We investigate light hadron spectroscopy with an improved quenched staggered quark action. We compare the results obtained with an improved gauge plus an improved quark action, an improved gauge plus standard quark action, and the standard gauge plus standard quark action. Most of the improvement in the spectroscopy results is due to the improved gauge sector. However, the improved quark action substantially reduces violations of Lorentz invariance, as evidenced by the meson dispersion relations.Comment: New references adde

    Vector meson dominance and the rho meson

    Full text link
    We discuss the properties of vector mesons, in particular the rho^0, in the context of the Hidden Local Symmetry (HLS) model. This provides a unified framework to study several aspects of the low energy QCD sector. Firstly, we show that in the HLS model the physical photon is massless, without requiring off field diagonalization. We then demonstrate the equivalence of HLS and the two existing representations of vector meson dominance, VMD1 and VMD2, at both tree level and one loop order. Finally the S matrix pole position is shown to provide a model and process independent means of specifying the rho mass and width, in contrast to the real axis prescription currently used in the Particle Data Group tables.Comment: 18 pages, REVTE

    Distinct magnetic regimes through site-selective atom substitution in the frustrated quantum antiferromagnet Cs2_2CuCl4x_{4-x}Brx_x

    Full text link
    We report on a systematic study of the magnetic properties on single crystals of the solid solution Cs2_2CuCl4x_{4-x}Brx_x (0 \leq x \leq 4), which include the two known end-member compounds Cs2_2CuCl4_4 and Cs2_2CuBr4_4, classified as quasi-two-dimensional quantum antiferromagnets with different degrees of magnetic frustration. By comparative measurements of the magnetic susceptibility χ\chi(TT) on as many as eighteen different Br concentrations, we found that the inplane and out-of-plane magnetic correlations, probed by the position and height of a maximum in the magnetic susceptibility, respectively, do not show a smooth variation with x. Instead three distinct concentration regimes can be identified, which are separated by critical concentrations xc1_{c1} = 1 and xc2_{c2} = 2. This unusual magnetic behavior can be explained by considering the structural peculiarities of the materials, especially the distorted Cu-halide tetrahedra, which support a site-selective replacement of Cl- by Br- ions. Consequently, the critical concentrations xc1_{c1} (xc2_{c2}) mark particularly interesting systems, where one (two) halidesublattice positions are fully occupied.Comment: 15 pages, 4 figure
    corecore