38 research outputs found

    Local Oxidative and Nitrosative Stress Increases in the Microcirculation during Leukocytes-Endothelial Cell Interactions

    Get PDF
    Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O2•−) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O2•− and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O2•− and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O2•− and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ∼0.6 fold, O2•− increased ∼27 fold and peroxynitrite increased ∼30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O2•− and peroxynitrite concentration in the lumen. The increased O2•− and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O2•− in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Correlating the kinetics of cytokine-induced E-selectin adhesion and expression on endothelial cells.

    Get PDF
    Many human diseases are mediated through the immune system. In chronic inflammatory disorders, the processes ordinarily involved in tissue healing become destructive. Endothelial cells normally recruit leukocytes to inflamed tissue using cytokine-induced adhesion receptors on the surfaces of interacting cells. Leukocyte capture depends on specialized characteristics of these receptors, particularly the binding kinetics. This study is designed to clarify the relationship between cytokine-induced changes in cell properties and binding kinetics. Here, we measure the kinetics of expression and monoclonal antibody binding for E-selectin in interleukin-1alpha-stimulated microvascular endothelium in vitro and incorporate the data into kinetic models. Quantitative flow cytometry is used to determine molecular density (expression), and micropipette assays are used to find the probability of adhesion (function). Within five hours of interleukin-1alpha stimulation, E-selectin density increases from 0 to 742 sites/microm(2), and antibody-E-selectin adhesion probability increases from a baseline of 6.3% to 64%. A kinetic model is applied to find an apparent association rate constant, k(f), of 3.7 x 10(-14) cm(2)/sec for antibody-E-selectin binding. Although the model successfully predicts experimental results, the rate constant is undervalued for a diffusion-limited process, suggesting that functional adhesion may be modified through cytokine-induced changes in microtopology and receptor localization

    Myosin I contributes to the generation of resting cortical tension.

    No full text
    The amoeboid myosin I's are required for cellular cortical functions such as pseudopod formation and macropinocytosis, as demonstrated by the finding that Dictyostelium cells overexpressing or lacking one or more of these actin-based motors are defective in these processes. Defects in these processes are concomitant with changes in the actin-filled cortex of various Dictyostelium myosin I mutants. Given that the amoeboid myosin I's possess both actin- and membrane-binding domains, the mutant phenotypes could be due to alterations in the generation and/or regulation of cell cortical tension. This has been directly tested by analyzing mutant Dictyostelium that either lacks or overexpresses various myosin I's, using micropipette aspiration techniques. Dictyostelium cells lacking only one myosin I have normal levels of cortical tension. However, myosin I double mutants have significantly reduced (50%) cortical tension, and those that mildly overexpress an amoeboid myosin I exhibit increased cortical tension. Treatment of either type of mutant with the lectin concanavalin A (ConA) that cross-links surface receptors results in significant increases in cortical tension, suggesting that the contractile activity of these myosin I's is not controlled by this stimulus. These results demonstrate that myosin I's work cooperatively to contribute substantially to the generation of resting cortical tension that is required for efficient cell migration and macropinocytosis
    corecore