9,423 research outputs found
Water impact analysis of space shuttle solid rocket motor by the finite element method
Preliminary analysis showed that the doubly curved triangular shell elements were too stiff for these shell structures. The doubly curved quadrilateral shell elements were found to give much improved results. A total of six load cases were analyzed in this study. The load cases were either those resulting from a static test using reaction straps to simulate the drop conditions or under assumed hydrodynamic conditions resulting from a drop test. The latter hydrodynamic conditions were obtained through an emperical fit of available data. Results obtained from a linear analysis were found to be consistent with results obtained elsewhere with NASTRAN and BOSOR. The nonlinear analysis showed that the originally assumed loads would result in failure of the shell structures. The nonlinear analysis also showed that it was useful to apply internal pressure as a stabilizing influence on collapse. A final analysis with an updated estimate of load conditions resulted in linear behavior up to full load
Observation of modified hadronization in relativistic Au+Au collisions: a promising signature for deconfined quark-gluon matter
Measurements of identified particles from Au+Au collisions at
GeV are reviewed. Emphasis is placed on nuclear
modification, baryon-to-meson ratios, and elliptic flow at intermediate
transverse momentum ( GeV/c). Possible connections between (1)
these measurements, (2) the running coupling for static quark anti-quark pairs
at finite temperature, and (3) the creation of a deconfined quark-gluon phase
are presented. Modifications to hadronization in Au+Au collisions are proposed
as a likely signature for the creation of deconfined colored matter.Comment: 8 pages, 5 figures, invited talk at the Strange Quark Matter 2004
conference, Cape Town, South Afric
The negative acute phase response of serum transthyretin following Streptococcus suis infection in the pig
Peer reviewedPublisher PD
Evidence from Identified Particles for Active Quark and Gluon Degrees of Freedom
Measurements of intermediate pT (1.5 < pT < 5.0 GeV/c) identified particle
distributions in heavy ion collisions at SPS and RHIC energies display striking
dependencies on the number of constituent quarks in the corresponding hadron.
One finds that elliptic flow at intermediate pT follows a constituent quark
scaling law as predicted by models of hadron formation through coalescence. In
addition, baryon production is also found to increase with event multiplicity
much faster than meson production. The rate of increase is similar for all
baryons, and seemingly independent of mass. This indicates that the number of
constituent quarks determines the multiplicity dependence of identified hadron
production at intermediate pT. We review these measurements and interpret the
experimental findings.Comment: 8 pages, 5 figures, proceedings for SQM2006 conference in Los Angele
Divergence-type 2+1 dissipative hydrodynamics applied to heavy-ion collisions
We apply divergence-type theory (DTT) dissipative hydrodynamics to study the
2+1 space-time evolution of the fireball created in Au+Au relativistic
heavy-ion collisions at 200 GeV. DTTs are exact hydrodynamic
theories that do no rely on velocity gradient expansions and therefore go
beyond second-order theories. We numerically solve the equations of motion of
the DTT for Glauber initial conditions and compare the results with those of
second-order theory based on conformal invariants (BRSS) and with data. We find
that the charged-hadron minumum-bias elliptic flow reaches its maximum value at
lower in the DTT, and that the DTT allows for a value of
slightly larger than that of the BRSS. Our results show that the differences
between viscous hydrodynamic formalisms are a significant source of uncertainty
in the precise extraction of from experiments.Comment: v4: 29 pages, 12 figures, minor changes. Final version as published
in Phys. Rev.
Higher Flow Harmonics in Heavy Ion Collisions from STAR
We report STAR measurements relating to higher flow harmonics including the
centrality dependence of two- and four-particle cumulants for harmonics 1 to 6.
Two-particle correlation functions vs. \Delta\eta and \Delta\phi are presented
for pT and number correlations. We find the power spectra (Fourier Transforms
of the correlation functions) for central collisions drop quickly for higher
harmonics. The \Delta\eta dependence of v3{2}2 and the pT and centrality
dependence of v2 and v3 are studied. Trends are conistent with expectations
from models including hot-spots in the initial energy density and an expansion
phase. We also present v3 and v2{2}2 - v2{4}2 vs. \surdsNN .Comment: 8 pages. Conference proceedings for Quark Matter 201
- …