11,216 research outputs found

    An operational system for subject switching between controlled vocabularies: A computational linguistics approach

    Get PDF
    The NASA Lexical Dictionary (NLD), a system that automatically translates input subject terms to those of NASA, was developed in four phases. Phase One provided Phrase Matching, a context sensitive word-matching process that matches input phrase words with any NASA Thesaurus posting (i.e., index) term or Use reference. Other Use references have been added to enable the matching of synonyms, variant spellings, and some words with the same root. Phase Two provided the capability of translating any individual DTIC term to one or more NASA terms having the same meaning. Phase Three provided NASA terms having equivalent concepts for two or more DTIC terms, i.e., coordinations of DTIC terms. Phase Four was concerned with indexer feedback and maintenance. Although the original NLD construction involved much manual data entry, ways were found to automate nearly all but the intellectual decision-making processes. In addition to finding improved ways to construct a lexical dictionary, applications for the NLD have been found and are being developed

    A simple derivation of Kepler's laws without solving differential equations

    Full text link
    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple reconsideration of Newton's figure naturally leads to en explicit expression of the velocity and to the equation of the trajectory. This derivation, which can be fully apprehended by beginners at university (or even before) can be considered as a first application of mechanical concepts to a physical problem of great historical and pedagogical interest

    Completed cohomology of Shimura curves and a p-adic Jacquet-Langlands correspondence

    Full text link
    We study indefinite quaternion algebras over totally real fields F, and give an example of a cohomological construction of p-adic Jacquet-Langlands functoriality using completed cohomology. We also study the (tame) levels of p-adic automorphic forms on these quaternion algebras and give an analogue of Mazur's `level lowering' principle.Comment: Updated version. Contains some minor corrections compared to the published versio

    The Interaction of New and Old Magnetic Fluxes at the Beginning of Solar Cycle 23

    Get PDF
    The 11-year cycle of solar activity follows Hale's law by reversing the magnetic polarity of leading and following sunspots in bipolar regions during the minima of activity. In the 1996-97 solar minimum, most solar activity emerged in narrow longitudinal zones - `active longitudes' but over a range in latitude. Investigating the distribution of solar magnetic flux, we have found that the Hale sunspot polarity reversal first occurred in these active zones. We have estimated the rotation rates of the magnetic flux in the active zones before and after the polarity reversal. Comparing these rotation rates with the internal rotation inferred by helioseismology, we suggest that both `old' and `new' magnetic fluxes were probably generated in a low-latitude zone near the base of the solar convection zone. The reversal of active region polarity observed in certain longitudes at the beginning of a new solar cycle suggests that the phenomenon of active longitudes may give fundamental information about the mechanism of the solar cycle. The non-random distribution of old-cycle and new-cycle fluxes presents a challenge for dynamo theories, most of which assume a uniform longitudinal distribution of solar magnetic fields.Comment: 4 pages, 5 figures; accepted for publication in ApJ Letter

    Viscous evolution of point vortex equilibria: The collinear state

    Full text link
    When point vortex equilibria of the 2D Euler equations are used as initial conditions for the corre- sponding Navier-Stokes equations (viscous), typically an interesting dynamical process unfolds at short and intermediate time scales, before the long time single peaked, self-similar Oseen vortex state dom- inates. In this paper, we describe the viscous evolution of a collinear three vortex structure that cor- responds to an inviscid point vortex fixed equilibrium. Using a multi-Gaussian 'core-growth' type of model, we show that the system immediately begins to rotate unsteadily, a mechanism we attribute to a 'viscously induced' instability. We then examine in detail the qualitative and quantitative evolution of the system as it evolves toward the long-time asymptotic Lamb-Oseen state, showing the sequence of topological bifurcations that occur both in a fixed reference frame, and in an appropriately chosen rotating reference frame. The evolution of passive particles in this viscously evolving flow is shown and interpreted in relation to these evolving streamline patterns.Comment: 17 pages, 15 figure

    The Ground State Energy of Heavy Atoms According to Brown and Ravenhall: Absence of Relativistic Effects in Leading Order

    Full text link
    It is shown that the ground state energy of heavy atoms is, to leading order, given by the non-relativistic Thomas-Fermi energy. The proof is based on the relativistic Hamiltonian of Brown and Ravenhall which is derived from quantum electrodynamics yielding energy levels correctly up to order α2\alpha^2Ry

    Texas Guide for Controlling Household Insects.

    Get PDF
    6 p

    Boundary conditions at spatial infinity for fields in Casimir calculations

    Full text link
    The importance of imposing proper boundary conditions for fields at spatial infinity in the Casimir calculations is elucidated.Comment: 8 pages, 1 figure, submitted to the Proceedings of The Seventh Workshop QFEXT'05 (Barcelona, September 5-9, 2005

    Origins of Mass

    Get PDF
    Newtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). The equations for massless particles support extra symmetries - specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles (WW and ZZ bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive (i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of WW and ZZ boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass mH125m_H \approx 125 GeV. In addition to consolidating our understanding of the origin of mass, a Higgs particle with mH125m_H \approx 125 GeV could provide an important clue to the future, as it is consistent with expectations from supersymmetry.Comment: Invited review for the Central European Journal of Physics. This is the supplement to my 2011 Solvay Conference talk promised there. It is adapted from an invited talk given at the Atlanta APS meeting, April 2012. 33 pages, 6 figures. v2: Added update section bringing in the CERN discovery announcemen

    Generalized vortex-model for the inverse cascade of two-dimensional turbulence

    Full text link
    We generalize Kirchhoff's point vortex model of two-dimensional fluid motion to a rotor model which exhibits an inverse cascade by the formation of rotor clusters. A rotor is composed of two vortices with like-signed circulations glued together by an overdamped spring. The model is motivated by a treatment of the vorticity equation representing the vorticity field as a superposition of vortices with elliptic Gaussian shapes of variable widths, augmented by a suitable forcing mechanism. The rotor model opens up the way to discuss the energy transport in the inverse cascade on the basis of dynamical systems theory.Comment: 14 pages, 21 figure
    corecore