636 research outputs found
Relationship between charge stripe order and structural phase transitions in La1.875Ba0.125-xSrxCuO4
Identification of Magnetite in Lunar Regolith Breccia 60016: Evidence for Oxidized Conditions at the Lunar Surface
Lunar regolith breccias are temporal archives of magmatic and impact bombardment processes on the Moon. Apollo 16 sample 60016 is an ‘ancient’ feldspathic regolith breccia that was converted from a soil to a rock at ~3.8 Ga. The breccia contains a small (70 × 50 μm) rock fragment composed dominantly of an Fe-oxide phase with disseminated domains of troilite. Fragments of plagioclase (An95-97), pyroxene (En74-75, Fs21-22,Wo3-4) and olivine (Fo66-67) are distributed in and adjacent to the Fe-oxide. The silicate minerals have lunar compositions that are similar to anorthosites. Mineral chemistry, synchrotron X-ray Absorption Near Edge Spectroscopy (XANES) and X-ray Diffraction (XRD) studies demonstrate that the oxide phase is magnetite with an estimated Fe3+/ΣFe ratio of ~0.45. The presence of magnetite in 60016 indicates that oxygen fugacity during formation was equilibrated at, or above, the Fe-magnetite or wűstite-magnetite oxygen buffer. This discovery provides direct evidence for oxidised conditions on the Moon. Thermodynamic modelling shows that magnetite could have been formed from oxidisation-driven mineral replacement of Fe-metal or desulphurisation from Fe-sulphides (troilite) at low temperatures (°C) in equilibrium with H2O steam/liquid or CO2 gas. Oxidising conditions may have arisen from vapour transport during degassing of a magmatic source region, or from a hybrid endogenic-exogenic process when gases were released during an impacting asteroid or comet impact
Measurements of Shock Effects Recorded by Hayabusa Samples
We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD) [1,2]. As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith
Relative contributions of lattice distortion and orbital ordering to resonant x-ray scattering in manganites
We investigated the origin of the energy splitting observed in the resonant
x-ray scattering (RXS) in manganites. Using thin film samples with controlled
lattice parameters and orbital states at a fixed orbital filling, we estimated
that the contribution of the interatomic Coulomb interaction relative to the
Jahn-Teller mechanism is insignificant and at most 0.27. This indicates that
RXS probes mainly Jahn-Teller distortion in manganites.Comment: 8 pages, 4 figure
Mineralogy of Pyroxene and Olivine in the Almahata Sitta Ureilite
The Almahata Sitta meteorite (hereafter "Alma") is the first example of a recovered asteroidal sample that fell to earth after detection still in the orbit (2008TC3 asteroid), and thus is critical to understand the relationship between meteorites and their asteroidal parent bodies [1]. Alma is a polymict ureilite showing a fine-grained brecciated texture with variable lithologies from black, porous to denser, white stones [1]. It is an anomalous ureilite because of wide compositional ranges of silicates with abundant pores often coated by vapor-deposit crystals [1]. Nevertheless, Alma has general similarities to all ureilites because of reduction textures of silicates suggestive of rapid cooling from high temperature as well as heterogeneous oxygen isotope compositions [e.g., 1-5]. Alma is especially unique because it spans the compositional range of known ureilites [1]. In this abstract we report detailed mineralogical and crystallographic investigations of two different fragments to further constrain its thermal history with regards to the nature of the ureilite parent body
Pure nematic state in iron-based superconductor
Lattice and electronic states of thin FeSe films on LaAlO substrates are
investigated in the vicinity of the nematic phase transition. No evidence of
structural phase transition is found by x-ray diffraction below K, while results obtained from resistivity measurement and angle-resolved
photoemission spectroscopy clearly show the appearance of a nematic state.
These results indicate formation of a pure nematic state in the iron-based
superconductor and provide conclusive evidence that the nematic state
originates from the electronic degrees of freedom. This pure nematicity in the
thin film implies difference in the electron-lattice interaction from bulk FeSe
crystals. FeSe films provide valuable playgrounds for observing the pure
response of "bare" electron systems free from the electron-lattice interaction,
and should make important contribution to investigate nematicity and its
relationship with superconductivity
- …