64 research outputs found

    Towards the automated localisation of targets in rapid image-sifting by collaborative brain-computer interfaces

    Get PDF
    The N2pc is a lateralised Event-Related Potential (ERP) that signals a shift of attention towards the location of a potential object of interest. We propose a single-trial target-localisation collaborative Brain-Computer Interface (cBCI) that exploits this ERP to automatically approximate the horizontal position of targets in aerial images. Images were presented by means of the rapid serial visual presentation technique at rates of 5, 6 and 10 Hz. We created three different cBCIs and tested a participant selection method in which groups are formed according to the similarity of participants’ performance. The N2pc that is elicited in our experiments contains information about the position of the target along the horizontal axis. Moreover, combining information from multiple participants provides absolute median improvements in the area under the receiver operating characteristic curve of up to 21% (for groups of size 3) with respect to single-user BCIs. These improvements are bigger when groups are formed by participants with similar individual performance, and much of this effect can be explained using simple theoretical models. Our results suggest that BCIs for automated triaging can be improved by integrating two classification systems: one devoted to target detection and another to detect the attentional shifts associated with lateral targets

    EPS mid-career award 2014: the control of attention in visual search - cognitive and neural mechanisms

    Get PDF
    In visual search, observers try to find known target objects among distractors in visual scenes where the location of the targets is uncertain. This review article discusses the attentional processes that are active during search and their neural basis. Four successive phases of visual search are described. During the initial preparatory phase, a representation of the current search goal is activated. Once visual input has arrived, information about the presence of target-matching features is accumulated in parallel across the visual field (guidance). This information is then used to allocate spatial attention to particular objects (selection), before representations of selected objects are activated in visual working memory (recognition). These four phases of attentional control in visual search are characterized both at the cognitive level and at the neural implementation level. It will become clear that search is a continuous process that unfolds in real time. Selective attention in visual search is described as the gradual emergence of spatially specific and temporally sustained biases for representations of task-relevant visual objects in cortical maps

    Sensing serotonin secreted from human serotonergic neurons using aptamer-modified nanopipettes

    No full text
    The serotonergic system in the human brain modulates several physiological processes, and altered serotonergic neurotransmission has been implicated in the neuropathology of several psychiatric disorders. The study of serotonergic neurotransmission in psychiatry has long been restricted to animal models, but advances in cell reprogramming technology have enabled the generation of serotonergic neurons from patient-induced pluripotent stem cells (iPSCs). While iPSC-derived human serotonergic neurons offer the possibility to study serotonin (5-HT) release and uptake, particularly by 5-HT-modulating drugs such as selective serotonin reuptake inhibitors (SSRIs), a major limitation is the inability to reliably quantify 5-HT secreted from neurons in vitro. Herein, we address this technical gap via a novel sensing technology that couples 5-HT-specific DNA aptamers into nanopores (glass nanopipettes) with orifices of ~10 nm to detect 5-HT in complex neuronal culture medium with higher selectivity, sensitivity, and stability than existing methods. The 5-HT aptamers undergo conformational rearrangement upon target capture and serve as gatekeepers of ionic flux through the nanopipette opening. We generated human serotonergic neurons in vitro and detected secreted 5-HT using aptamer-coated nanopipettes in a low nanomolar range, with the possibility of detecting significantly lower (picomolar) concentrations. Furthermore, as a proof of concept, we treated human serotonergic neurons in vitro with the SSRI citalopram and detected a significant increase in extracellular 5-HT using the aptamer-modified nanopipettes. We demonstrate the utility of such methods for 5-HT detection, raising the possibility of fast quantification of neurotransmitters secreted from patient-derived live neuronal cells.ISSN:1359-4184ISSN:1476-557
    • …
    corecore