2,530 research outputs found

    Fermi Velocity Spectrum and Incipient Magnetism in TiBe2

    Full text link
    We address the origin of the incipient magnetism in TiBe2_2 through precise first principles calculations, which overestimate the ferromagnetic tendency and therefore require correction to account for spin fluctuations. TiBe2_2 has sharp fine structure in its electronic density of states, with a van Hove singularity only 3 meV above the Fermi level. Similarly to the isovalent weak ferromagnet ZrZn2_2, it is flat bands along the K-W-U lines of hexagonal face of the fcc Brillouin zone make the system prone to magnetism, and more so if electrons are added. We find that the Moriya BB coefficient (multiplying ωq\frac{\omega}{q} in the fluctuation susceptibility Δχ(q,ω)\Delta \chi(q,\omega)) is divergent when the velocity vanishes at a point on the Fermi surface, which is very close (3 meV) to occurring in TiBe2_2. In exploring how the FM instability (the qq=0 Stoner enhancement is S≈60S\approx 60) might be suppressed by fluctuations in TiBe2_2, we calculate that the Moriya A coefficient (of q2q^2) is negative, so qq=0 is not the primary instability. Explicit calculation of χo(q)\chi_o(q) shows that its maximum occurs at the X point (1,0,0)2πa(1,0,0)\frac{2\pi}{a}; TiBe2_2 is thus an incipient {\it anti}ferromagnet rather than ferromagnet as has been supposed. We further show that simple temperature smearing of the peak accounts for most of the temperature dependence of the susceptibility, which previously had been attributed to local moments (via a Curie-Weiss fit), and that energy dependence of the density of states also strongly affects the magnetic field variation of χ\chi

    Spin wave resonances in La_{0.7}Sr_{0.3}MnO_{3} films: measurement of spin wave stiffness and anisotropy field

    Full text link
    We studied magnetic field dependent microwave absorption in epitaxial La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} films using an X-band Bruker ESR spectrometer. By analyzing angular and temperature dependence of the ferromagnetic and spin-wave resonances we determine spin-wave stiffness and anisotropy field. The spin-wave stiffness as found from the spectrum of the standing spin-wave resonances in thin films is in fair agreement with the results of inelastic neutron scattering studies on a single crystal of the same composition [Vasiliu-Doloc et al., J. Appl. Phys. \textbf{83}, 7343 (1998)].Comment: 15 pages, 7 figures (now figure captions are included

    Intrinsic Low Temperature Paramagnetism in B-DNA

    Full text link
    We present experimental study of magnetization in λ\lambda-DNA in conjunction with structural measurements. The results show the surprising interplay between the molecular structures and their magnetic property. In the B-DNA state, λ\lambda-DNA exhibits paramagnetic behaviour below 20 K that is non-linear in applied magnetic field whereas in the A-DNA state, remains diamagnetic down to 2 K. We propose orbital paramagnetism as the origin of the observed phenomena and discuss its relation to the existence of long range coherent transport in B-DNA at low temperature.Comment: 5 pages, 4 figures, submitted to Physical Review Letters October 200

    A core genetic module : the Mixed Feedback Loop

    Full text link
    The so-called Mixed Feedback Loop (MFL) is a small two-gene network where protein A regulates the transcription of protein B and the two proteins form a heterodimer. It has been found to be statistically over-represented in statistical analyses of gene and protein interaction databases and to lie at the core of several computer-generated genetic networks. Here, we propose and mathematically study a model of the MFL and show that, by itself, it can serve both as a bistable switch and as a clock (an oscillator) depending on kinetic parameters. The MFL phase diagram as well as a detailed description of the nonlinear oscillation regime are presented and some biological examples are discussed. The results emphasize the role of protein interactions in the function of genetic modules and the usefulness of modelling RNA dynamics explicitly.Comment: To be published in Physical Review

    Socio-Economic Management Theory Related to BPM: A Case Study of Dysfunctions in Digital Transformation Strategy

    Get PDF
    This research claims that dynamic strategies demanded by today’s digital environment exacerbate inconsistency between an organization’s digital transformation efforts and its enterprise architecture (EA) planning process. This phenomenon leads to redundant investments, delayed implementation, and frequent failures in digital transformation projects. In order to investigate this inconsistency, we apply the socioeconomic approach to management (SEAM) theory. Through critical analysis of four case studies in a large manufacturing organization, we clarify the relationship between digital transformation and EA and reveal the dysfunction in strategic implementation from a SEAM and business process management (BPM) perspective. In practice, this research integrates digital transformation and EA to provide a context-specific approach for planning and designing enterprise digital transformation strategies

    Signatures of Spin Glass Freezing in NiO Nanoparticles

    Full text link
    We present a detailed study of the magnetic properties of sol-gel prepared nickel oxide nanoparticles of different sizes. We report various measurements such as frequency, field and temperature dependence of ac susceptibility, temperature and field dependence of dc magnetization and time decay of thermoremanent magnetization. Our results and analysis show that the system behaves as a spin glass.Comment: 8 pages, 9 figure

    Validation of an experimental setup to study atmospheric heterogeneous ozonolysis of semi-volatile organic compounds

    Get PDF
    International audienceThere is currently a need for reliable experimental procedures to follow the heterogeneous processing simulating the atmospheric conditions. This work offers an alternative experimental device to study the behaviour of semi-volatile organic compounds (SVOC) that presumably exhibit extremely slow reactivity (e.g. pesticides) towards the atmospheric oxidants such as ozone and OH. Naphthalene was chosen as a test compound since it was widely studied in the past and hence represents a good reference. Prior to ozone exposure, the gaseous naphthalene was adsorbed via gas-solid equilibrium on silica and XAD-4 particles. Then, the heterogeneous reaction of ozone with adsorbed naphthalene was investigated in specially designed flow tube reactors. After the reaction, the remaining naphthalene (adsorbed on particles surface) was extracted, filtered and analyzed by Gas Chromatography-Flame Ionization Detector (GC-FID). Thus, the kinetics results were obtained following the consumption of naphthalene. Using this procedure, the rate constants of heterogeneous ozonolysis of naphthalene (kO3 silica=2.26 (±0.09)×10−17 cm3 molec−1 s−1 and kO3 XAD-4=4.29 (±1.06)×10−19 cm3 molec−1 s−1) were determined for silica and XAD-4 particles, at 25°C and relative humidity <0.7%. The results show that the nature of the particles significantly affects the kinetics and that heterogeneous ozonolysis of naphthalene is faster than its homogeneous ozonolysis in the gas phase

    Zeeman effects on the impurity-induced resonances in d-wave superconductors

    Full text link
    It is shown how the resonant states induced by a single spinless impurity in a d-wave superconductor evolve under the effect of an applied Zeeman magnetic field. Moreover, it is demonstrated that the spin-orbit coupling to the impurity potential can have important and characteristic effects on the resonant states and their response to the Zeeman field, especially when the impurity is close to the unitary limit. For zero or very small spin-orbit interaction, the resonant states becomes Zeeman splitted by the magnetic field while when the spin-orbit coupling is important, new low-lying resonances arise which do not show any Zeeman splitting.Comment: 5 pages with 5 eps figures embedded. To appear on Phys. Rev.

    Effect of magnetic and non-magnetic impurities on highly anisotropic superconductivity

    Full text link
    We generalize Abrikosov-Gor'kov solution of the problem of weakly coupled superconductor with impurities on the case of a multiband superconductor with arbitrary interband order parameter anisotropy, including interband sign reversal of the order parameter. The solution is given in terms of the effective (renormalized) coupling matrix and describes not only TcT_c suppression but also renormalization of the superconducting gap basically at all temperatures. In many limiting cases we find analytical solutions for the critical temperature suppression. We illustrate our results by numerical calculations for two-band model systems.Comment: 18 pages (12pt) RevTeX, 4 postscript figure
    • …
    corecore