54 research outputs found

    Pathway to the PiezoElectronic Transduction Logic Device

    Full text link
    The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing.Comment: in Nano Letters (2015

    Strain analysis of I-c(epsilon) characteristic of YBCO coated conductor measured by a Walters spring

    Get PDF
    lc-strain characteristic of YBCO coated conductor was measured using a Walters spring (WASP). In this technique, additional bending and thermal strains induced to the YBCO layer should be considered. In order to produce different initial bending strain to the YBCO layer, the conductor was wound around the springs with different diameters and in the different bending directions. The clear evidence was obtained that -strain curves using a WASP strongly depend on the initial bending strain state. However, when -strain curves were normalized by a maximum value, all of the curves even including the data measured by uniaxial strain method for a short sample fall on to the same curve. Strain analysis based on the rule of mixture probes that the shift along the strain axis for each -strain curve can be explained by the bending and thermal strain during soldering. This result suggests that combined strain of bending and tensile strains can be regarded as simple summation in the present YBCO coated conductor

    The influence of process parameters on precursor evaporation for alumina nanopowder synthesis in an inductively coupled rf thermal plasma

    No full text
    The process parameters of an inductively coupled thermal plasma used for nanopowder synthesis are experimentally investigated using various plasma diagnostics and in situ powder monitoring methods. An enthalpy probe technique is applied to characterize the plasma properties under particle-free conditions. The nanoparticle synthesis from microscale alumina precursors is monitored in situ by optical emission spectroscopy and laser light extinction measurements to investigate the powder evaporation. The synthesized powders are collected in a sampling unit and characterized ex situ by particle size analysis as well as by electron microscopy. At low flow rates of the torch central gas, higher plasma enthalpy, a laminar powder flow and increased evaporation of the precursor have been observed. A precursor- and an energy-deficient regime related to the precursor feed rate and plasma enthalpy are found from the emission line intensities of aluminium metal vapour. The number fraction of plasma-treated precursors, which is an important process parameter, is calculated from the precursor number density obtained from laser extinction measurements
    corecore