91 research outputs found
Expression of a Constitutively Active Calcineurin Encoded by an Intron-Retaining mRNA in Follicular Keratinocytes
Hair growth is a highly regulated cyclical process. Immunosuppressive immunophilin ligands such as cyclosporin A (CsA) and FK506 are known as potent hair growth modulatory agents in rodents and humans that induce active hair growth and inhibit hair follicle regression. The immunosuppressive effectiveness of these drugs has been generally attributed to inhibition of T cell activation through well-characterized pathways. Specifically, CsA and FK506 bind to intracellular proteins, principally cyclophilin A and FKBP12, respectively, and thereby inhibit the phosphatase calcineurin (Cn). The calcineurin (Cn)/NFAT pathway has an important, but poorly understood, role in the regulation of hair follicle development. Here we show that a novel-splicing variant of calcineurin AĂ CnAĂ-FK, which is encoded by an intron-retaining mRNA and is deficient in the autoinhibitory domain, is predominantly expressed in mature follicular keratinocytes but not in the proliferating keratinocytes of rodents. CnAĂ-FK was weakly sensitive to Ca2+ and dephosphorylated NFATc2 under low Ca2+ levels in keratinocytes. Inhibition of Cn/NFAT induced hair growth in nude mice. Cyclin G2 was identified as a novel target of the Cn/NFATc2 pathway and its expression in follicular keratinocytes was reduced by inhibition of Cn/NFAT. Overexpression of cyclin G2 arrested the cell cycle in follicular keratinocytes in vitro and the Cn inhibitor, cyclosporin A, inhibited nuclear localization of NFATc2, resulting in decreased cyclin G2 expression in follicular keratinocytes of rats in vivo. We therefore suggest that the calcineurin/NFAT pathway has a unique regulatory role in hair follicle development
Selective killing of Burkitt's lymphoma cells by mBAFF-targeted delivery of PinX1
Increased expression of BAFF (B cell-activating factor belonging to the TNF family) and its receptors has been identified in numerous B-cell malignancies. A soluble human BAFF mutant (mBAFF), binding to BAFF receptors but failing to activate B-lymphocyte proliferation, may function as a competitive inhibitor of BAFF and may serve as a novel ligand for targeted therapy of BAFF receptor-positive malignancies. Pin2/TRF1-interacting protein X1 (PinX1), a nucleolar protein, potently inhibits telomerase activity and affects tumorigenicity. In this study, we generated novel recombinant proteins containing mBAFF, a polyarginine tract 9R and PinX1 (or its C/N terminal), to target lymphoma cells. The fusion proteins PinX1/CâG4Sâ9RâG4SâmBAFF and PinX1/Câ9RâmBAFF specifically bind and internalize into BAFF receptor-positive cells, and subsequently induce growth inhibition and apoptosis. The selective cytotoxicity of the fusion proteins is a BAFF receptor-mediated process and depends on mBAFF, PinX1/C and 9R. Moreover, the fusion proteins specifically kill BAFF receptor-expressing Burkitt's lymphoma (BL) cells by inhibiting telomerase activity and the consequent shortening of telomeres. Therapeutic experiments using PinX1CâG4Sâ9RâG4SâmBAFF in severe combined immunodeficient (SCID) mice implanted with Raji cells showed significantly prolonged survival times, indicating the in vivo antitumor activity of the fusion protein. These results suggest the potential of PinX1/CâG4Sâ9RâG4SâmBAFF in targeted therapy of BL
Cardiothoracic ratio and vertebral heart size (VHS) to standardize the heart size of the tufted capuchin (Cebus apella Linnaeus, 1758) in computerized radiographic images
Abstract: The VHS and CTR were assessed using computerized thoracic radiographs of ten clinically healthy tufted capuchin monkeys (five males and five females) from the Wild Animal Screening Center in SĂŁo LuĂs (Centro de Triagem de Animais Silvestres de SĂŁo LuĂs-MA-CETAS). Radiographs were taken in laterolateral and dorsoventral projections to calculate the cardiothoracic ratio (VHS) and vertebral heart size (CTR). The VHS showed mean values of 9.34±0.32v (males) and 9.16±0.34v (females) and there was no statistical difference between males and females (p>0.05). The CTR showed mean values of 0.55±0.04 (males) and 0.52±0.03 (females) and there was no statistical difference between the sexes (p>0.05). There was positive correlation between VHS and CTR (r=0.78). The thoracic and heart diameters showed mean values of 5.70±0.48cm and 2.16±0.40cm in the males, respectively. In the females they measured 5.32±0.39cm and 2.94±0.32cm. There was no statistical difference between the sexes. Our results show that the high correlation found between VHS and CTR permitted the verification with similar clinical precision between the two methods to estimate alterations in the heart silhouette by radiographic examination of tufted capuchin, making it an easy technique to apply that can be considered in the investigation of heart problems for this wild species
Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205
Dendritic cells (DC) are specialized white blood cells that initiate and direct immune responses. Targeting DC surface proteins to deliver liposomes carrying antigens has demonstrated potential for eliciting antigen -specific immune responses. To evaluate this strategy in preclinical studies, we prepared anti-human DEC-205 immunoliposomes (anti-hDEC-205 iLPSM) and compared their uptake by monocyte-derived DC (MoDC) and blood DC (BDC) with conventional liposomes (cLPSM). Antibody conjugation increased the number of immature MoDC taking up liposornes to 70-80%, regardless of the antibody coupled, whereas less than 20% endocytosed cLPSM. Anti -hDEC- 205 -IgG specifically increased cell uptake by 15% and the total iLPSM uptake six-fold. The non-specific iLPSM uptake was unlikely to be Fc receptor-mediated as excess immunoglobulins failed to block the uptake. Only a small population (7-24%) of mature MoDC took up cLPSM and control iLPSM. In contrast, similar to 70% of mature MoDC took up anti-hDEC-205 iLPSM, endocytosing 10-fold more iLPSM than the control iLPSM. Anti-hDEC-205 iLPSM uptake by CD1c(+) BDC was similar to the immature MoDC, but was five-fold increased compared to the control iLPSM. Confocal microscopy confirmed that the anti-hDEC-205 iLPSM were phagocytosed by DC and available for antigen processing. Thus, DEC-205 is an effective target for delivering liposomes to human DC. (c) 2007 Elsevier Ltd. All rights reserved
Inhibition of the Wnt signaling pathway by the PR61 subunit of protein phosphatase 2A
Axin, a negative regulator of the Wnt signaling pathway, forms a complex with glycogen synthase kinase-3beta (GSK-3beta), beta-catenin, adenomatous polyposis coli (APC) gene product, and Dvl, and it regulates GSK-3beta-dependent phosphorylation in the complex and the stability of beta-catenin. Using yeast two-hybrid screening, we found that regulatory subunits of protein phosphatase 2A, PR61beta and -gamma, interact with Axin. PR61beta or -gamma formed a complex with Axin in intact cells, and their interaction was direct. The binding site of PR61beta on Axin was different from those of GSK-3beta, beta-catenin, APC, and Dvl. Although PR61beta did not affect the stability of beta-catenin, it inhibited Dvl- and beta-catenin-dependent T cell factor activation in mammalian cells. Moreover, it suppressed beta-catenin-induced axis formation and expression of siamois, a Wnt target gene, in Xenopus embryos, suggesting that PR61beta acts either at the level of beta-catenin or downstream of it. Taken together with the previous observations that PR61 interacts with APC and functions upstream of beta-catenin, these results demonstrate that PR61 regulates the Wnt signaling pathway at various steps.status: publishe
- âŠ