77 research outputs found

    Travelling Randomly on the Poincar\'e Half-Plane with a Pythagorean Compass

    Get PDF
    A random motion on the Poincar\'e half-plane is studied. A particle runs on the geodesic lines changing direction at Poisson-paced times. The hyperbolic distance is analyzed, also in the case where returns to the starting point are admitted. The main results concern the mean hyperbolic distance (and also the conditional mean distance) in all versions of the motion envisaged. Also an analogous motion on orthogonal circles of the sphere is examined and the evolution of the mean distance from the starting point is investigated

    Ultralocal Fields and their Relevance for Reparametrization Invariant Quantum Field Theory

    Get PDF
    Reparametrization invariant theories have a vanishing Hamiltonian and enforce their dynamics through a constraint. We specifically choose the Dirac procedure of quantization before the introduction of constraints. Consequently, for field theories, and prior to the introduction of any constraints, it is argued that the original field operator representation should be ultralocal in order to remain totally unbiased toward those field correlations that will be imposed by the constraints. It is shown that relativistic free and interacting theories can be completely recovered starting from ultralocal representations followed by a careful enforcement of the appropriate constraints. In so doing all unnecessary features of the original ultralocal representation disappear. The present discussion is germane to a recent theory of affine quantum gravity in which ultralocal field representations have been invoked before the imposition of constraints.Comment: 17 pages, LaTeX, no figure

    Fundamentals of Quantum Gravity

    Get PDF
    The outline of a recent approach to quantum gravity is presented. Novel ingredients include: (1) Affine kinematical variables; (2) Affine coherent states; (3) Projection operator approach toward quantum constraints; (4) Continuous-time regularized functional integral representation without/with constraints; and (5) Hard core picture of nonrenormalizability. The ``diagonal representation'' for operator representations, introduced by Sudarshan into quantum optics, arises naturally within this program.Comment: 15 pages, conference proceeding

    The Affine Quantum Gravity Program

    Get PDF
    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix \{\hg_{ab}(x)\} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination.Comment: 16 pages, LaTeX, no figure

    Cascades of Particles Moving at Finite Velocity in Hyperbolic Spaces

    Full text link
    A branching process of particles moving at finite velocity over the geodesic lines of the hyperbolic space (Poincar\'e half-plane and Poincar\'e disk) is examined. Each particle can split into two particles only once at Poisson paced times and deviates orthogonally when splitted. At time tt, after N(t)N(t) Poisson events, there are N(t)+1N(t)+1 particles moving along different geodesic lines. We are able to obtain the exact expression of the mean hyperbolic distance of the center of mass of the cloud of particles. We derive such mean hyperbolic distance from two different and independent ways and we study the behavior of the relevant expression as tt increases and for different values of the parameters cc (hyperbolic velocity of motion) and λ\lambda (rate of reproduction). The mean hyperbolic distance of each moving particle is also examined and a useful representation, as the distance of a randomly stopped particle moving over the main geodesic line, is presented

    A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography

    Full text link
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy's foundational work associated with the work of Boyer and Grabiner; and to Bishop's constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.Comment: 57 pages; 3 figures. Corrected misprint

    Die methodische Bedeutung der „unlösbaren“ Probleme

    No full text
    • 

    corecore