199 research outputs found

    CD4+ and πσT Cells are the main Producers of IL-22 and IL-17A in Lymphocytes from Mycobacterium bovis-infected Cattle

    Get PDF
    Gene transcription studies have identified dual roles for the cytokines IL-17A and IL-22 in bovine tuberculosis, where they show potential as both predictors of vaccine success and correlates of infection. To allow for a detailed investigation of the cell populations responsible for production of these cytokines, we have utilised a novel bovine IL-22 specific recombinant antibody for flow cytometry. Bovine tuberculin (PPDB) induced greater IL-22 and IL-17A production in Mycobacterium bovis (M. bovis)-infected cattle compared to non-infected controls, while PWM-induced cytokine levels were similar between the two groups. In M. bovis-infected animals, PPDB specific IL-22 and IL-17A responses were observed in both CD4+ T cell and γδ T cell populations. Although both cytokines were detected in both cell types, IL-22/IL-17A double producers were rare and confined mainly to the γδ T cell population. These results support previous gene transcription studies and extend the observation of increased IL-22 and IL-17A responses in M. bovis-infected animals to the level of protein production. We were also able to characterise the cell populations responsible for these disease-related cytokine responses. The data generated can be used to further our understanding of the immunopathology of bovine tuberculosis and to produce more sensitive and specific immune-diagnostic reagents

    The humoral immune response to BCG vaccination

    Get PDF
    Bacillus Calmette Guérin (BCG) is the only currently available vaccine against tuberculosis (TB), but it confers incomplete and variable protection against pulmonary TB in humans and bovine TB (bTB) in cattle. Insights into the immune response induced by BCG offer an underexploited opportunity to gain knowledge that may inform the design of a more efficacious vaccine, which is urgently needed to control these major global epidemics. Humoral immunity in TB and bTB has been neglected, but recent studies supporting a role for antibodies in protection against TB has driven a growing interest in determining their relevance to vaccine development. In this manuscript we review what is known about the humoral immune response to BCG vaccination and re-vaccination across species, including evidence for the induction of specific B cells and antibodies; and how these may relate to protection from TB or bTB. We discuss potential explanations for often conflicting findings and consider how factors such as BCG strain, manufacturing methodology and route of administration influence the humoral response. As novel vaccination strategies include BCG prime-boost regimens, the literature regarding off-target immunomodulatory effects of BCG vaccination on non-specific humoral immunity is also reviewed. Overall, reported outcomes to date are inconsistent, but indicate that humoral responses are heterogeneous and may play different roles in different species, populations, or individual hosts. Further study is warranted to determine whether a new TB vaccine could benefit from the targeting of humoral as well as cell-mediated immunity

    Characterization of effector and memory T cell subsets in the immune response to bovine tuberculosis in cattle

    Get PDF
    Cultured IFN-γ ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses with humans; however, this important subset of lymphocytes is poorly characterized in cattle. Vaccine-elicited cultured IFN-γ ELISPOT responses correlate with protection against bovine tuberculosis in cattle. However, whether this assay measures cattle Tcm responses or not is uncertain. The objective of the present study was to characterize the relative contribution of Tcm (CCR7+, CD62Lhi, CD45RO+), T effector memory (Tem, defined as: CCR7-, CD62Llow/int, CD45RO+), and T effector cells (CCR7-, CD62L-/low, CD45RO-), in the immune response to Mycobacterium bovis. Peripheral blood mononuclear cells (PBMC) from infected cattle were stimulated with a cocktail of M. bovis purified protein derivative, rTb10.4 and rAg85A for 13 days with periodic addition of fresh media and rIL-2. On day 13, cultured PBMC were re-stimulated with medium alone, rESAT-6:CFP10 or PPDb with fresh autologous adherent cells for antigen presentation. Cultured cells (13 days) or fresh PBMCs (ex vivo response) from the same calves were analyzed for IFN-γ production, proliferation, and CD4, CD45RO, CD62L, CD44, and CCR7 expression via flow cytometry after overnight stimulation. In response to mycobacterial antigens, ~75% of CD4+ IFN-γ+ cells in long-term cultures expressed a Tcm phenotype while less than 10% of the ex vivo response consisted of Tcm cells. Upon re-exposure to antigen, long-term cultured cells were highly proliferative, a distinctive characteristic of Tcm, and the predominant phenotype within the long-term cultures switched from Tcm to Tem. These findings suggest that proliferative responses of Tcm cells to some extent occurs simultaneously with reversion to effector phenotypes (mostly Tem). The present study characterizes Tcm cells of cattle and their participation in the response to M. bovis infection

    Oral vaccination of cattle with heat inactivated Mycobacterium bovis does not compromise bovine TB diagnostic tests

    Get PDF
    AbstractIn this study we investigated whether oral uptake of a heat inactivated M. bovis wildlife vaccine by domestic cattle induced systemic immune responses that compromised the use of tuberculin or defined antigens in diagnostic tests for bovine TB. Positive skin test and blood-based IFN-γ release assay (IGRA) results were observed in all calves vaccinated via the parenteral route (i.e. intramuscular). In contrast, no positive responses to tuberculin or defined antigens were observed in either the skin test or IGRA test when performed in calves vaccinated via the oral route. In conclusion, our results suggest that the heat inactivated M. bovis vaccine could be used to vaccinate wildlife in a baited form in conjunction with the following in cattle: (i) continuation of existing tuberculin skin testing or novel skin test formats based on defined antigens; and (ii) the use of IGRA tests utilizing tuberculin or defined antigens

    Display of antigens on polyester inclusions lowers the antigen concentration required for a bovine tuberculosis skin test

    Get PDF
    The tuberculin skin test is the primary screening test for the diagnosis of bovine tuberculosis (TB), and use of this test has been very valuable in the control of this disease in many countries. However, the test lacks specificity when cattle have been exposed to environmental mycobacteria or vaccinated with Mycobacterium bovis bacille Calmette-Guérin (BCG). Recent studies showed that the use of three or four recombinant mycobacterial proteins, including 6-kDa early secretory antigenic target (ESAT6), 10-kDa culture filtrate protein (CFP10), Rv3615c, and Rv3020c, or a peptide cocktail derived from those proteins, in the skin test greatly enhanced test specificity, with minimal loss of test sensitivity. The proteins are present in members of the pathogenic Mycobacterium tuberculosis complex but are absent in or not expressed by the majority of environmental mycobacteria and the BCG vaccine strain. To produce a low-cost skin test reagent, the proteins were displayed at high density on polyester beads through translational fusion to a polyhydroxyalkanoate synthase that mediates the formation of antigen-displaying inclusions in recombinant Escherichia coli. Display of the proteins on the polyester beads greatly increased their immunogenicity, allowing for the use of very low concentrations of proteins (0.1 to 3 μg of mycobacterial protein/inoculum) in the skin test. Polyester beads simultaneously displaying all four proteins were produced in a single fermentation process. The polyester beads displaying three or four mycobacterial proteins were shown to have high sensitivity for detection of M. bovis-infected cattle and induced minimal responses in animals exposed to environmental mycobacteria or vaccinated with BCG.Full Tex

    Application of long-term cultured interferon-γ enzyme-linked immunospot assay for assessing effector and memory T cell responses in cattle

    Get PDF
    doi:10.3791/52833 (2015). Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled up to 95 % of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a lifetime. In humans, two functionally distinct subsets of memory T cells have been described based on the expression of lymph node homing receptors. Central memory T cells express C-C chemokine receptor 7 and CD45RO and are mainly located in T-cell areas of secondary lymphoid organs. Effector memory T cells express CD45RO, lack CCR7 and display receptors associated with lymphocyte homing to peripheral or inflamed tissues. Effector T cells do not express either CCR7 or CD45RO but upon encounter with antigen produce effector cytokines, such as interferon-γ. Interferon-γ release assays are used for the diagnosis of bovine and human tuberculosis and detect primaril

    Tuberculin skin testing boosts interferon gamma responses to DIVA reagents in Mycobacterium bovis-Infected cattle

    Get PDF
    ABSTRACT Mycobacterium bovis BCG vaccination sensitizes cattle to bovine tuberculin, which compromises the use of the current bovine tuberculosis (TB) surveillance tests. Although the performance of a blood test (that utilizes antigens expressed by Mycobacterium bovis but not by BCG) capable of discriminating infected from vaccinated animals (DIVA interferon gamma test [DIT]) has been evaluated in naturally infected TB field reactors, there is a need to perform similar analysis in a BCG-vaccinated M. bovis -infected population. Furthermore, we explored different scenarios under which a DIT may be implemented alongside BCG vaccination: (i) serial testing to resolve potential false-positive skin test results or (ii) a standalone test to replace the single intradermal comparative cervical tuberculin (SICCT) skin test. Our results demonstrated significantly better relative test sensitivity when the DIT was evaluated in a serial test scenario. Direct comparison of pre- and post-skin test blood samples revealed that the SICCT test induced significant boosting of the gamma interferon response in M. bovis -infected animals to both the ESAT-6–CFP-10 and Rv3615c peptide cocktails that comprise the DIT, which persisted for the ESAT-6–CFP-10 reagent for at least 14 days. Importantly, no similar boosting effects were observed in noninfected BCG vaccinates, suggesting that DIVA blood testing after a recent skin test would have minimal impact on test specificity. </jats:p

    Characterization of two in vivo-expressesd methyltransferases of the Mycobacterium tuberculosis complex:Antigenicity and genetic regulation

    Get PDF
    Genome sequencing of Mycobacterium tuberculosis complex members has accelerated the search for new disease-control tools. Antigen mining is one area that has benefited enormously from access to genome data. As part of an ongoing antigen mining programme, we screened genes that were previously identified by transcriptome analysis as upregulated in response to an in vitro acid shock for their in vivo expression profile and antigenicity. We show that the genes encoding two methyltransferases, Mb1438c/Rv1403c and Mb1440c/Rv1404c, were highly upregulated in a mouse model of infection, and were antigenic in M. bovis-infected cattle. As the genes encoding these antigens were highly upregulated in vivo, we sought to define their genetic regulation. A mutant was constructed that was deleted for their putative regulator, Mb1439/Rv1404; loss of the regulator led to increased expression of the flanking methyltransferases and a defined set of distal genes. This work has therefore generated both applied and fundamental outputs, with the description of novel mycobacterial antigens that can now be moved into field trials, but also with the description of a regulatory network that is responsive to both in vivo and in vitro stimuli
    • …
    corecore