1,065 research outputs found

    Structural basis of the chiral selectivity of Pseudomonas cepacia lipase

    Get PDF
    To investigate the enantioselectivity of Pseudomonas cepacia lipase, inhibition studies were performed with SC- and RC-(RP,SP)-1,2-dialkylcarbamoylglycero-3-O-p-nitrophenyl alkylphosphonates of different alkyl chain lengths. P. cepacia lipase was most rapidly inactivated by RC-(RP,SP)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octylphosphonate (RC-trioctyl) with an inactivation half-time of 75 min, while that for the SC-(RP,SP)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octyl-phosphonate (SC-trioctyl) compound was 530 min. X-ray structures were obtained of P. cepacia lipase after reaction with RC-trioctyl to 0.29-nm resolution at pH 4 and covalently modified with RC-(RP,SP)-1,2-dibutylcarbamoylglycero-3-O-p-nitrophenyl butyl-phosphonate (RC-tributyl) to 0.175-nm resolution at pH 8.5. The three-dimensional structures reveal that both triacylglycerol analogues had reacted with the active-site Ser87, forming a covalent complex. The bound phosphorus atom shows the same chirality (SP) in both complexes despite the use of a racemic (RP,SP) mixture at the phosphorus atom of the triacylglycerol analogues. In the structure of RC-tributyl-complexed P. cepacia lipase, the diacylglycerol moiety has been lost due to an aging reaction, and only the butyl phosphonate remains visible in the electron density. In the RC-trioctyl complex the complete inhibitor is clearly defined; it adopts a bent tuning fork conformation. Unambiguously, four binding pockets for the triacylglycerol could be detected: an oxyanion hole and three pockets which accommodate the sn-1, sn-2, and sn-3 fatty acid chains. Van der Waals’ interactions are the main forces that keep the radyl groups of the triacylglycerol analogue in position and, in addition, a hydrogen bond to the carbonyl oxygen of the sn-2 chain contributes to fixing the position of the inhibitor.

    Local-HDP:Interactive Open-Ended 3D Object Categorization in Real-Time Robotic Scenarios

    Get PDF
    We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categorization, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to learn independent topics for each category incrementally and to adapt to the environment in time. Hierarchical Bayesian approaches like Latent Dirichlet Allocation (LDA) can transform low-level features to high-level conceptual topics for 3D object categorization. However, the efficiency and accuracy of LDA-based approaches depend on the number of topics that is chosen manually. Moreover, fixing the number of topics for all categories can lead to overfitting or underfitting of the model. In contrast, the proposed Local-HDP can autonomously determine the number of topics for each category. Furthermore, the online variational inference method has been adapted for fast posterior approximation in the Local-HDP model. Experiments show that the proposed Local-HDP method outperforms other state-of-the-art approaches in terms of accuracy, scalability, and memory efficiency by a large margin. Moreover, two robotic experiments have been conducted to show the applicability of the proposed approach in real-time applications

    Local-HDP:Interactive Open-Ended 3D Object Categorization

    Get PDF
    We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categorization, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to learn independent topics for each category incrementally and to adapt to the environment in time. Hierarchical Bayesian approaches like Latent Dirichlet Allocation (LDA) can transform low-level features to high-level conceptual topics for 3D object categorization. However, the efficiency and accuracy of LDA-based approaches depend on the number of topics that is chosen manually. Moreover, fixing the number of topics for all categories can lead to overfitting or underfitting of the model. In contrast, the proposed Local-HDP can autonomously determine the number of topics for each category. Furthermore, an inference method is proposed that results in a fast posterior approximation. Experiments show that Local-HDP outperforms other state-of-the-art approaches in terms of accuracy, scalability, and memory efficiency with a large margin

    Local-HDP:Interactive Open-Ended 3D Object Categorization in Real-Time Robotic Scenarios

    Get PDF
    We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categorization, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to learn independent topics for each category incrementally and to adapt to the environment in time. Hierarchical Bayesian approaches like Latent Dirichlet Allocation (LDA) can transform low-level features to high-level conceptual topics for 3D object categorization. However, the efficiency and accuracy of LDA-based approaches depend on the number of topics that is chosen manually. Moreover, fixing the number of topics for all categories can lead to overfitting or underfitting of the model. In contrast, the proposed Local-HDP can autonomously determine the number of topics for each category. Furthermore, the online variational inference method has been adapted for fast posterior approximation in the Local-HDP model. Experiments show that the proposed Local-HDP method outperforms other state-of-the-art approaches in terms of accuracy, scalability, and memory efficiency by a large margin. Moreover, two robotic experiments have been conducted to show the applicability of the proposed approach in real-time applications.Comment: 13 page

    Local-HDP:Interactive Open-Ended 3D Object Categorization

    Get PDF
    We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categorization, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to learn independent topics for each category incrementally and to adapt to the environment in time. Hierarchical Bayesian approaches like Latent Dirichlet Allocation (LDA) can transform low-level features to high-level conceptual topics for 3D object categorization. However, the efficiency and accuracy of LDA-based approaches depend on the number of topics that is chosen manually. Moreover, fixing the number of topics for all categories can lead to overfitting or underfitting of the model. In contrast, the proposed Local-HDP can autonomously determine the number of topics for each category. Furthermore, an inference method is proposed that results in a fast posterior approximation. Experiments show that Local-HDP outperforms other state-of-the-art approaches in terms of accuracy, scalability, and memory efficiency with a large margin
    • …
    corecore