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LOCAL-HDP: INTERACTIVE OPEN-ENDED 3D OBJECT
CATEGORY RECOGNITION IN REAL-TIME ROBOTIC SCENARIOS

H. Ayoobi?, H. Kasaei, M. Cao, R. Verbrugge, B. Verheij
Bernoulli Institute, University of Groningen, Netherlands

?h.ayoobi@rug.nl

ABSTRACT

We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categoriza-
tion, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to
learn independent topics for each category incrementally and to adapt to the environment in time.
Hierarchical Bayesian approaches like Latent Dirichlet Allocation (LDA) can transform low-level
features to high-level conceptual topics for 3D object categorization. However, the efficiency and ac-
curacy of LDA-based approaches depend on the number of topics that is chosen manually. Moreover,
fixing the number of topics for all categories can lead to overfitting or underfitting of the model.
In contrast, the proposed Local-HDP can autonomously determine the number of topics for each
category. Furthermore, the online variational inference method has been adapted for fast posterior
approximation in the Local-HDP model. Experiments show that the proposed Local-HDP method
outperforms other state-of-the-art approaches in terms of accuracy, scalability, and memory efficiency
by a large margin. Moreover, two robotic experiments have been conducted to show the applicability
of the proposed approach in real-time applications.

1 Introduction

Most recent object recognition/detection techniques are based on deep neural networks [1, 2, 3, 4, 5, 6]. These methods
typically need a large labeled dataset for a long training process. The number of object categories (class labels) should
be predefined in advance for such methods. However, in real-life robotic scenarios, a robot can always face new object
categories while operating in its environment. Therefore, the model should get updated in an open-ended manner
without completely retraining the model [7]. Furthermore, object category recognition is not a well-defined problem
because of the large inter-category variation (Figure 1 (left)), multiple object views for each object (Figure 1 (right)),
and concept drift in dynamic environments [8].

Object recognition in humans is a complex hierarchical multi-stage process of streaming visual data in the cortical
regions [9]. The hierarchical structure of the brain for the object recognition task has motivated us to choose hierarchical
Bayesian models like Latent Dirichlet Allocation (LDA) [10] and Hierarchical Dirichlet Process (HDP) [11] for object
category recognition.

In this paper, we suggest that 3D visual streaming data should be processed continuously, and object category learning
and recognition should be performed simultaneously in an open-ended manner.

Figure 1: An illustrative example of (left) intra-category variation of the mug category in the Washington RGB-D
dataset, and (right) different object views of a mug object.
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We propose the Local Hierarchical Dirichlet Process (Local-HDP), an extension of the Hierarchical Dirichlet Process
[11] method, which can incrementally learn new topics for each category of objects independently. In contrast to notable
recent works [8, 12, 13] using a predefined number of topics, Local-HDP is more flexible since it is a non-parametric
Bayesian model that can autonomously determine the number of topics for each category at run-time.

Figure 2: The architecture of the proposed method.

Figure 2 shows the processing layers of the proposed
Local-HDP. The tabletop objects are detected in the
initial phase (green bounding box around apple on the
table in Figure 2). Subsequently, the hierarchy of the
five processing layers is utilized. The features layer
extracts a set of local shape features using the spin-
image descriptor [14]. The computed features are rep-
resented as Bag of visual Words (BoWs). The obtained
representation is then sent to the topics layer, where a set
of topics is inferred autonomously for the given object
using the proposed Local-HDP method. Each topic is
a distribution over visual words. In other words, the
topic layer provides an unsupervised mapping of the
BoW representation to the topics space, which can fill
the conceptual gap between low-level features and high-
level concepts. As shown in the object views layer, the
appearance of an object may vary from different perspec-
tives (Figure 1 (bottom)). Therefore, it is necessary to
infer topics using different object views. There might
be different instances in an object category as well (see
Figure 1 (top)). This point is addressed in the categories
layer. Moreover, a simulated teacher has been developed
to interact with the model and evaluate its performance
in an open-ended manner.

This work extends two approaches, namely Local-LDA
[8] and HDP [11], in four aspects. First, our approach can autonomously detect the number of required topics to
independently represent the objects in each category, avoiding the limitation of Local-LDA for determining the number
of topics in advance. This feature prevents underfitting or overfitting of the model. Second, our research adapts the
online variational inference technique [15], which significantly reduces inference time. Third, the proposed local
online variational inference method leads to memory optimization since it needs to store a smaller average number of
instances per object category in memory. Fourth, our work extends the hierarchical Dirichlet process [11] by learning
and updating local topics for each object category independently in an incremental and open-ended fashion.

2 Related Work

Object representation is one of the main building blocks of object recognition approaches. The underlying reason is that
the output of the object representation module is used in both learning and recognition. Object representation techniques
can be categorized into three groups, namely, global and local object descriptors and machine learning approaches [16].
Notable global object descriptors are Global Orthographic Object Descriptor (GOOD) [17, 18], Ensemble of Shape
Functions (ESF) [19] and Viewpoint Feature Histogram (VFH) [20]. Examples of local 3D shape descriptors include
Spin-Images (SI) [14], Intrinsic Shape Signature (ISS) [21], and Fast Point Feature Histogram (FPFH) [22]. Local
descriptors are more robust to occlusions and clutter. However, comparing pure local descriptors is a computationally
expensive task [23]. To alleviate this problem, machine learning techniques like Bag of Words (BoW) [24], Latent
Dirichlet Allocation (LDA) [10, 25] and deep learning [26, 27] methods can be used for representing objects in a
compact and uniform format.

Kasaei et al. [8] extended Latent Dirichlet Allocation (LDA) and proposed Local-LDA. They showed the application
of Local-LDA in the context of open-ended 3D object category learning and recognition. Similar to our approach,
Local-LDA learns a set of topics for each object category incrementally and independently. Unlike our approach, in
Local-LDA, the same number of topics is chosen in advance based on trials and errors for all of the object categories. A
good choice for the number of topics for each object category is correlated to the intra-category variation of each 3D
object category. Therefore, choosing the same number of topics for all the object categories with different intra-category
variation might be not reasonable. Moreover, in open-ended scenarios, it is not feasible to anticipate the inter-category
variation of 3D objects that the model might see in the future and choose a fixed number of topics in advance for all the
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(a) coffee mug (b) voxelization (c) local-features (d) BoW

Figure 3: (a) The RGB-D image of a coffee mug. (b) Key-points selection using voxelizing [8]. (c) Key-points
neighborhoods are represented by different colors. (d) The BoW representation for the given object.

categories. To solve these issues, our approach can autonomously choose the number of topics for each object category
on the fly without a need for in advanced trails and errors. This makes our approach more robust for recognizing object
categories with various inter-category and intra-category variation and applicable in real-world open-ended scenarios.
Local-LDA uses collapsed Gibbs sampling for approximating the posterior probability. However, we adapt the online
variational inference technique [15] for Local-HDP.

Our approach builds on the Hierarchical Dirichlet Process (HDP) [11], that is based on Dirichlet process (DP) [28]
and mixture of DPs [29]. Posterior inference is intractable for HDP, and much research has been done to find a
proper approximate inference algorithm [11, 30, 31]. The Markov Chain Monte Carlo (MCMC) sampling method
for DP mixture models has been proposed for approximate inference in HDPs [32]. David Blei et al. proposed the
variational inference for DP mixtures [33]. Teh et al. [11] proposed the Chinese Restaurant Franchise metaphor for
HDP and used Gibbs sampling method for the inference. The online variational inference approach is proposed by
Wang et al. [15] for HDP, which can be used in online incremental learning scenarios and for large corpora. Our
method is different from HDP, since HDP only shares the topics among the same categories and not across different
categories. This is especially needed in the case of 3D object categorization for open-ended scenarios [8]. HDP has
further extensions to construct tree-structured representations for text data which have nested structure [34]. Similar to
supervised hierarchical Dirichlet Process (sHDP) [35], we use the category label of each object. Unlike sHDP, we learn
object categories in an open-ended fashion, while in sHDP, the number of object categories to be learned should be
defined in advance.

Deep learning-based approaches [36, 37, 38] try to learn a sparse representation for 3D objects. Unlike our approach,
such methods typically need a large labeled dataset and require long training time. In particular, our proposed approach
does not require a large labeled dataset and can incrementally update the model facing an unforeseen object category in
an open-ended manner. Moreover, the number of categories is not fixed in open-ended approaches like ours.

3 Method

We assume that an object has already been segmented from the point cloud of the scene, and we hence mainly focus on
detailing the Local Hierarchical Dirichlet Process (Local-HDP) approach.

3.1 Pre-Processing Layers

In Figure 2, the first two layers—the feature layer and BoWs layer— are the pre-processing layers. In the feature layer,
we first select key-points for the given object and then compute a local shape feature for each key-point. Towards
this goal, we first voxelized1 the object (Figure 3) (b), and then, the nearest point to each voxel center is selected as a
key-point. Afterwards, the spin-image descriptor [14] is used to encode the surrounding shape in each key-point using
the original point cloud (Figure 3 (c)). This way, each object view is described by a set of spin-images in the first layer,
Os = {s1, . . . , sN} where N is the number of key-points. The obtained representation is then sent to the BoWs layer.
Since HDP-based models have the bag-of-words assumption - that the order of words in the document can be neglected
- the BoWs layer transforms the computed spin-images to a BoW format (Figure 3 (d)). Towards this end, the BoWs
layer requires a dictionary with V visual words (spin-images). In this work, we have created a dictionary of visual
words using the same methodology as Local-LDA [8]. The obtained BoW representation is fed to the topic layer.

3.2 Local Hierarchical Dirichlet Process

After synthesizing the point cloud of the 3D objects to a set of visual words in BoW format, the data is ready to be
inserted into the topic layer where the proposed Local-HDP method is employed. In this layer, the model transforms

1http://docs.pointclouds.org/trunk/classpcl_1_1_voxel_grid.html
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the low-level features in BoW format to conceptual high-level topics. In other words, each object is represented as
a distribution over topics, where each topic is a distribution over visual words. To this end, we use an incremental
inference approach where the number of categories is not known beforehand and the agent does not know which
additional object categories will be available at run-time. The plate notation of Local-HDP is shown in Figure 4. In
this graph, C is the number of categories, |c| is the number of objects in each category. Each object, d, is represented
by a set of N visual words, Wd,n where n, d show the n’th visual word from the d’th object. Each visual word is an
element from the vocabulary of visual worlds with predefined V words, that is Wd,n ∈ {1...V }. Using a Coffee Mug as
an example, a distribution over the topics of the Coffee Mug should be used to generate the visual words of the object.
Accordingly, a particular topic is selected out of the mixture of possible topics of the Coffee Mug category to generate
the visual words. For instance, coffee mugs typically have a “handle”, which is represented as a distribution of visual
words that repeatedly occurring together. This can be interpreted as the “handle” topic, which is inferred from the
co-occurrence of the visual words in several objects of the same category. The process of choosing a topic and then
drawing the visual words from that topic is repeated several times to generate all the visual words of the Coffee Mug.
After constructing the model in a generative manner, a reverse procedure for inferring the latent variables from the data
is used.

3.3 Local Online Variational Inference

In this section, we adapt the online variational inference approximate inference method [15] for Local-HDP. This
method can be used in open-ended applications since it can handle streaming data in an online and incremental manner.
Moreover, it is faster than traditional approximate inference techniques, e.g., Chinese restaurant franchise [11] and
variational inference [33], and it can be used to infer the latent variables of different scale datasets [15].

Online variational inference for HDP is inspired by the online variational Bayes [39] method for LDA. This method
tries to optimize a variational objective function [40] exploiting stochastic optimization [41]. Using Sethuraman’s
stick-breaking construction for HDP [11], the variational distribution for local online variational inference is in the
following form:

q(β′, π′, c, z, φ) = q(β′)q(π′)q(c)q(z)q(φ) (1)

In the terminology of variational inference techniques, q is called the variational approximation to the posterior p.
Variational techniques try to solve an optimization problem over a class of tractable distributions Q in order to find a
q ∈ Q that is most similar to p and can be used as its approximation. Moreover, β′ = (β

′

k)
∞
k=1 is the top-level stick

proportion, π′ = (φ
′

jt)
∞
t=1 is the bottom-level stick proportion and cj = (c

′

jt)
∞
t=1 is the vector of indicators for each Gj .

Moreover, φ = (φk)
∞
k=1 is the inferred topic distribution, and zjn is the topic index for the nth word in the jth document

wjn.

The factorized form of q(c), q(z), q(φ), q(β′) and q(π′) is the same as the online variational inference for HDP [42].
Assuming that we have |c| objects in each category for Local-HDP, the variational lower bound for object j in category
C is calculated as follows:

L
(C)
j = Eq[log(p(wj |cj , zj , φ)p(cj |β′)p(zj |π′)p(π

′

j |α0))] +H(q(cj)) +H(q(zj))

+H(q(φ′)) +
1

|c|
[Eq[logp(β

′)p(φ)] +H(q(β′)) +H(q(φ)] (2)

Where H(.) is the entropy term for the variational distribution. Therefore, the lower bound term for each category is
calculated in the following way:

L(C) =
∑
j

L
(C)
j = Ej [|c|L(C)

j ] (3)

Using coordinate ascent equations in the same way as online variation inference, the object-level parameters
(aj , bj , ϕj , ζj) are estimated. To be more specific, aj and bj are the parameters of the beta distributions for the
bottom-level stick proportions πj , ϕj is the variational parameter for the vector of indicators cj , and ζj is the variational
parameter for the topic zj . These variables are defined in the same way as in [42]. Then, for the category-level
parameters (λ(C), u(C), v(C)), we do gradient descent with respect to a learning rate:

∂λ
(C)
kw (j) = −λkw + η + |c|

T∑
t=1

ϕjtk(
∑
n

ζjntI[wjn = w]) (4)
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∂u
(C)
k (j) = −uk + 1 + |c|

T∑
t=1

ϕjtk (5)

∂v
(C)
k (j) = −vk + λ+ |c|

T∑
t=1

K∑
l=k+1

ϕjtl (6)

Here, K and T are the document and corpus level truncates. Moreover, ϕ (multinomial), ζ (multinomial) and λ
(Dirichlet) are the variational parameters, which are the same for all the categories. Using an appropriate learning rate
pt0 for online inference, the updates for λ(C), u(C) and v(C) become:

λ(C) ← λ(C) + pt0∂λ
(C)(j) (7)

u(C) ← u(C) + pt0∂u
(C)(j) (8)

v(C) ← v(C) + pt0∂v
(C)(j) (9)

Algorithm 1 shows the pseudo-code of the proposed inference technique for the Local-HDP approach.

(a) Local-HDP

(b) Stick-breaking

Figure 4: The plate notation of Local-
HDP and its stick-breaking construction.

Algorithm 1: Local Online Variational Inference
initialization:
Randomly initialize λ(C) = (λ

(C)
k )Kk=1, u(C) = (u

(C)
k )K−1

k=1 and
v(C) = (v

(C)
k )K−1

k=1 for all the learned categories. Set t0 = 1
for each Category C do

while Stopping criterion is not met do
- Use the object view j for updating the parameters.
- Compute the document-level parameters aj , bj ,Φj , ζj using the

same methodology as [15].
- Using Eq. 4-6, compute the natural gradients ∂λ(C)(j), ∂u(C)(j)

and ∂v(C)(j).
- Set pt0 = (τ0 + t0)−K , t0 = t0 + 1.
- Update the λ(C), u(C), v(C) parameters using Eq. 7-9.

end
end

3.4 Object Category Learning and Recognition

In this subsection, the mechanism of interactive open-ended learning has been explained in more detail. Classical object
recognition methods do not support open-ended learning. In contrast, our method is open-ended, and the number of
categories can be incrementally extended through time. The system can interact with a human user to learn about new
categories or to update existing category models by receiving corrective feedback when misclassification occurred. We
follow the same methodology as [43] for this purpose. The user can interact with the system with one of the following
actions:

• Teach: introducing the category of target object to the agent.

• Ask: inquiring the agent about the category of a target object.

• Correct: sending corrective feedback to the agent in case of wrong categorization.

Whenever the agent receives a teach command, it incrementally updates the local model corresponding to the category
of the target object using the aforementioned online variational inference technique. In case of the ask command, the
log-likelihood is used to determine the category of an object. The log-likelihood is computed in the same way as in [15].
The local model with highest likelihood is then selected as the predicted category for an object.

5



Figure 5: RGB images for objects of different categories with depth data similarities in the Washington RGBD dataset.

4 Experimental Results

Following the same protocol as Local-LDA [8] for interacting with a simulated teacher, two sets of experiments have
been conducted to evaluate the performance of the proposed method. For Local-HDP in all the experiments, we set
pt0 = (τ0 + t0)

−K where K ∈ (0.5, 1] and τ0 > 0 as suggested by [15].

4.1 Datasets and Baselines for Comparison

For offline evaluation of the proposed Local-HDP and the other state-of-the-art approaches, we have used the RGB-D
restaurant object dataset [43]. This dataset has 10 categories of objects and each category has a significant intra-category
variation. It consists of 306 different object views for 10 household objects. Therefore, it is a suitable dataset to perform
extensive sets of experiments.

The Washington RGB-D dataset [44] is used for online open-ended evaluation of the method since it is one of the largest
3D object datasets. It has 250,000 views of 300 common household objects, categorized in 51 categories. Figure 5
shows some of the categories of objects presented in the Washington RGBD Dataset. In all experiments, only the depth
data has been used for determining the category of 3D objects. Therefore, as one can see in Figure 5, detecting the
category of an object based solely on the depth data is a hard task even for humans.

We have compared the proposed Local-HDP using local online variational inference with Local-LDA [8], LDA with
shared topics [10], BoW [24], RACE [45], and HDP with shared topics and online variational inference [15].

4.2 Offline Evaluation

Similar to Local-LDA, our approach has several parameters that should be well selected to provide an appropriate
balance between recognition performance, memory usage and computation time. In order to finetune the parameters of
our proposed method for offline evaluation, 240 experiments have been conducted with different parameter values. The
voxel grid approach has been used for down-sampling and finding the keypoints for the local descriptor. Voxel grid has
Voxel Size (VS) parameter which determines the size of each voxel. Moreover, the spin-image local descriptor has two
parameters, namely Image Width (IW) and Support Length (SL).

Parameters IW VS SL
Value 4 8 0.01 0.02 0.03 0.03 0.04 0.05 0.1

Average
accuracy (%)

Local-LDA 84 83 81 82 86 81 83 84 85
Local-HDP 94 92 91 93 95 91 92 92 94

Parameters Dictionary Size
Value 40 50 60 70 80 90 100 200 500 2000

Average
accuracy (%)

Local-LDA 82 82 82 83 85 85 86 87 88 90
Local-HDP 91 92 92 92 92 93 93 94 95 96

Table 1: Average accuracy of Local-HDP and Local-LDA
based on 240 experiments with different parameter values.

In all experiments, the first level and second level
concentration parameters are set to 1, chunk size for
offline evaluation is set to 1, and the maximum number
of topics is set to 100. All the other parameters are set
to the default values as proposed in [42] . Moreover,
in all the experiments the LDA parameters are set
to be the same values as described in [8]. Since
online variational inference is a stochastic inference
technique, for each experiment the order of the data
instances has been permuted 10 times and for each
permutation 10-fold cross-validation has been used.
Accordingly, the results have been averaged.

Table 1 shows the comparison of Local-HDP and
Local-LDA with different parameter values. As one
can see in this table, the proposed Local-HDP method outperforms Local-LDA which is the best among the other
methods (see [8]). Using the best parameter values based on Table 1 and the corresponding tables in [8], the accuracy
of all the approaches is shown in Table 2.
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Approach Accuracy (%) Run-time (s)
RACE [45] 87.0 1757.20
BoW [24] 89.0 195.60

LDA (shared topics) [10] 88.0 227
Local-LDA [8] 91.0 348

HDP (shared topics) [15] 90.33 233
Local-HDP (our approach) 97.11 352

Table 2: The comparison of different approaches using the
best parameter values.

Table 2 shows that Local-HDP outperforms the other
state-of-the-art methods in terms of accuracy with a
large margin. In particular, the accuracy of Local-
HDP was 97.11%, which is around 6.11 percentage
point (p.p.) better than Local-LDA, and 6.78, 9.11,
8.11, 10.11 p.p better than HDP, LDA, BoW and
RACE approaches respectively. Moreover, Local-
HDP has almost the same run-time as Local-LDA.

4.3 Open-Ended Evaluation

In order to evaluate our model in an open-ended learning scenario, we used the Washington RGBD dataset [44], and we
have followed the same methodology as discussed in [8]. In particular, we have developed a simulated teacher which
can interact with the model by either teaching a new category to it or asking the model to categorize the unforeseen
object view. In case of wrong categorization of an object by the model, a correcting feedback is sent to the model by the
simulated teacher. In order to teach a new category, the simulated teacher presents three randomly selected object views
of the corresponding category to the model. After teaching a new category, all of the previously learned categories are
tested using a set of randomly selected unforeseen object views. Subsequently, the accuracy of category prediction is
computed. In order to calculate the accuracy of the model at each point, a sliding window of size 3n is used, where n is
the number of learned categories. If the corresponding accuracy is higher than a certain threshold τ = 0.66 (which
means that the number of true-positives is at least twice the number of wrong predictions), a new category will be taught
by the simulated teacher to the model. If the learning accuracy does not exceed the threshold τ after a certain number
of iterations (100 for our experiments), the teacher infers that the agent is not able to learn more categories and the
experiment stops. More details on the online evaluation protocol which has been used in our experiments can be found
in [12].

Since the performance of open-ended evaluation may depend on the order of introducing categories and object views
(randomly selected at the beginning of each experiment), 10 independent experiments have been carried out for each
approach. Several performance measures have been used to evaluate the open-ended learning capabilities of the methods,
namely: (i) the number of Learned Categories (#LC); (ii) the number of Question/Correction Iterations (#QCI) by the
simulated user; (iii) the Average number of stored Instances per Category (AIC) ; (iv) Global Categorization Accuracy
(GCA), which represents the overall accuracy in each experiment. These performance measures have the following
interpretations. #LC shows the open-ended learning capability of the model, which answers the following question:
How capable is the model in learning new categories? #QCI shows the length of the experiment (iterations). AIC
represents the memory efficiency of the method. A lower average number of stored instances per category means a
higher memory efficiency of the method. AIC is also related to the learning speed. A smaller AIC means that the
method requires less observations to correctly recognize each category. #GCA shows the accuracy of the model in
predicting the right category for each object.

Approach #QCI #LC AIC GCA(%)
LDA 269 9.1 16.74 51.00%
HDP 753 27.2 12.76 66.14%

Local-LDA 1411 40.6 13.75 69.44%
Local-HDP 1330 51.0 6.85 85.23%

Table 3: The average result of 10
open-ended experiments for all the
methods.

In order to compare methods fairly, the simulated teacher shuffles data at the
beginning of each round of experiments and uses the same order of object
categories and instances for training and testing all the methods. Figure 6 (left)
shows the detailed summary of 10 experiments for Local-LDA, and Local-
HDP methods. It shows that Local-HDP could learn all 51 categories in all
experiments, while Local-LDA, HDP, and LDA, on average learned 40.6, 27.2,
and 9.1 categories, respectively (Table 3). This result shows the descriptive
power of Local-HDP.

Figure 6 (center) shows the learning capability of the new categories as a
function of the number of learned categories versus the question/correction
iterations. Local-HDP achieved best performance by learning all the 51 categories in 1330.20± 13.95 iterations (Table
3). One important observation is that shuffling the order of introducing categories by the simulated user does not have a
serious effect on the performance of Local-HDP, while it affects the performance of other methods significantly. The
longest experiment, on average was continued for 1411.20± 212.75 iterations with Local-LDA and the agent was able
to learn 40.60± 4.98.

Figure 6 (right) plots the global categorization accuracy versus the number of learned categories. It was observed that
the agent with Local-HDP not only achieved higher accuracy than other methods in all experiments but also learned all
the categories. It is worth mentioning that Local-HDP concluded prematurely due to the “lack of data” condition, i.e.,
no more categories available in the dataset. This means that the agent with Local-HDP has the potential of learning
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Exp# #QCI #LC AIC GCA(%)
1 201 8 14.88 52.74
2 231 8 16.38 53.68
3 336 10 17.2 57.74
4 495 15 15.47 62.22
5 193 9 14.44 46.63
6 138 5 17.4 47.83
7 264 7 20.29 54.17
8 348 10 19.3 53.16
9 206 9 15.22 46.60
10 279 10 16.9 50.18

Avg. 269 9.1 16.74 51

(a) Summary of experiments for LDA
Exp# #QCI #LC AIC GCA(%)

1 1011 34 13.24 65.58
2 737 22 14.59 65.40
3 306 15 10.47 63.40
4 439 19 10.84 66.06
5 1079 34 13.26 67.66
6 1052 35 12.74 67.59
7 937 25 16.52 63.93
8 909 32 11.88 68.76
9 480 24 9.417 67.92
10 1069 32 14.66 65.11

Avg. 753 27.2 12.76 66.14

(b) Summary of experiments for HDP

Exp# #QCI #LC AIC GCA(%)
1 1346 40 12.93 70.51
2 1764 40 17.73 66.61
3 1385 43 12.4 70.83
4 1224 41 11.29 72.22
5 1594 47 13.11 70.20
6 1551 46 13.04 70.21
7 1263 35 14.83 67.22
8 1455 46 12.04 71.41
9 1012 34 12.53 67.98

10 1518 34 17.62 67.26
Avg. 1411 40.6 13.75 69.44

(c) Summary of experiments for Local-LDA (Online Variational Inference)

Exp# #QCI #LC AIC GCA(%)
1 1325 51 6.45 86.72
2 1370 51 8.25 80.44
3 1325 51 6.62 86.04
4 1325 51 6.70 85.74
5 1325 51 6.37 87.02
6 1325 51 7.03 84.45
7 1325 51 6.64 85.96
8 1325 51 6.80 85.36
9 1330 51 7.17 83.98
10 1327 51 6.47 86.66

Avg. 1330 51 6.85 85.23

(d) Summary of experiments for Local-HDP (our approach)

Figure 6: Summary of 10 experiments for open-ended evaluation LDA, HDP, Local-LDA and our proposed Local-HDP
approach. The learning capacity and the global accuracy of different models is compared with the corresponding plots.

more categories in an open-ended fashion. According to Table 3, the average GCA for Local-HDP is 85.23% and it is
69.44%, 66.14% and 51.00% for Local-LDA, HDP and LDA, respectively.

Figure 7 represents the absolute number of stored instances per category in one round of the open-ended experiments. It
shows that the agent with Local-HDP stored a lower or equal number of instances for all of the categories. On closer
review using Figure 6 (left), one can see that the Local-HDP on average stored 6.85 instances per category to learn
51 categories, while Local-LDA stored 13.75 to learn 40.6 categories. HDP achieved the third place by storing 12.76
instances to learn 27.20 categories and LDA was the worst among the evaluated approaches, i.e., on average it stored
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Figure 7: The absolute number of stored instances per category: the lower stored instances mean that the method is
more memory efficient. The horizontal axis shows the order of introducing categories to all methods.

16.74 instances to learn 9.10 categories. According to this evaluation, Local-HDP is competent for robotic applications
with strict limits on the computation time and memory requirements.

a) The robotic setup for first demonstration. b) Point cloud and object category visualization in RViz
for the first robotic demonstration.

c) Clearing coke cans from the table for the second
robotic demonstration.

d) The RViz visualization of the recognized categories
for the second robotic demonstration.

Figure 8: The real-time application of the proposed Local-HDP 3D object category recognition method in a robotic
scenario.

5 Real-time Robotic Application

To demonstrate the applicability of the proposed 3D object categorization method in real-time robotic applications, we
have performed two object-manipulation experiments, as shown in Figure 8.
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In both demonstrations, a UR5e robotic arm is used to manipulate the objects located on a table. Moreover, a Kinect
camera is fixed in front of the table to acquire the visual data for further perceptual analysis. The system detects
table-top objects, draws a bounding box around them and assigns a tracking ID (TID) to each object (Figures 8.b -
8.d). The model does not initially have any knowledge about the category of the objects located on the table. In both
scenarios, we involved a human user in the learning loop as it is necessary for a human-robot interaction. In the first
scenario, a user can interact with the system through the RViz2 [46] 3D visualization environment and assign a category
label to each of the detected objects on the table. After introducing the object category labels to the model, it can detect
the category of the objects even if they have been placed in a different location on the table, which might change the
object view partially due to the perspective or occlusion by the other objects. Finally, the clearing task is initiated
in which for each individual object, the end-effector of the robotic arm moves to the pre-grasp position of a target
object, and then grasps the object and put it into a trash box located on the table (Figure 8.a). This demonstration
showed that the system was able to detect different object categories and learned about new object categories using very
few examples on-site. Furthermore, it was observed that the proposed approach was able to distinguish geometrically
very similar objects from each other (e.g., Cup vs CokeCan). The video of this robotic demonstration is available at:
https://youtu.be/YPsrBpqXWU4

The second robotic demonstration has more emphasis on category recognition of unforeseen objects and performing a
category-specific robotic task. In this demonstration, a user interacts with the system through voice commands and
introduces the initially located objects on the table to the model. The model uses the segmented point cloud of these
table-top objects to train the model. Subsequently, three new objects will be spawned on the table in the Gazebo
simulator [47]. After the detection of each of the new objects, the system tells the predicted category to the user and
asks for corrective feedback in case of a wrong prediction. This way the system learns about new object category
incrementally and update a category model once a misclassification happened.

After recognizing all object categories, the user commands the robot to clear all the coke cans from the table and put
them into the trash box located on the table. To accomplish this task, the robot should detect the pose as well as the
label of all objects. Then, the robot grasps and manipulates all the coke cans from the table while keeping the rest of
the objects from different categories on the table (Figure 8.c). A video for this robotic demonstration is available at:
https://youtu.be/otxd8D8yYLc

6 Conclusion

We propose a non-parametric hierarchical Bayesian model called Local Hierarchical Dirichlet Process (Local-HDP) for
interactive open-ended 3D object category learning and recognition. Each object is initially represented as a bag of
visual words and then transformed into a high-level conceptual topics representation.

We have conducted an extensive set of experiments in both offline and open-ended scenarios to validate our approach
and compare its performance with state-of-the-art methods. For the offline evaluations, we mainly used 10-fold cross-
validation (train-then-test). Local-HDP outperformed the selected state-of-the-art (i.e., RACE, BoW, LDA, Local-LDA,
and HDP) by a large margin, achieving appropriate computation time and object recognition accuracy. In the case of
open-ended evaluation, we have developed a simulated teacher to assess the performance of all approaches using a
recently proposed test-then-train protocol. Results show that the overall performance of Local-HDP is better than the
best results obtained with the other state-of-the-art approaches.

Local-HDP can autonomously determine the number of topics, even though finding a good choice for the number of
topics is not a trivial task in LDA-based approaches. Moreover, the number of topics in Local-LDA should be defined in
advance and is the same for all object categories, which may lead to overfitting or underfitting of the model. Local-HDP
has resolved this issue by finding the number of topics for each category based on the intra-category variation of objects.
Adapting online variational inference to the proposed approach enables Local-HDP to approximate the posterior for
large datasets rapidly.

In order to demonstrate the applicability of the proposed approach in real-time robotic applications, two robotic
demonstrations have been conducted using a UR5e robotic arm. These experiments showed that the robot was able to
learn new object categories using very few examples over time by interacting with non-expert human users.

In the continuation of this work, we would like to investigate the possibility of using the proposed method for graspable
part segmentation of 3D objects. This way, we can address the problem of 3D object recognition and affordance
detection (i.e., detecting graspable parts) simultaneously.

2 ROS Visualization: http://wiki.ros.org/rviz
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