10,792 research outputs found

    New results for a photon-photon collider

    Get PDF
    We present new results from studies in progress on physics at a two-photon collider. We report on the sensitivity to top squark parameters of MSSM Higgs boson production in two-photon collisions; Higgs boson decay to two photons; radion production in models of warped extra dimensions; chargino pair production; sensitivity to the trilinear Higgs boson coupling; charged Higgs boson pair production; and we discuss the backgrounds produced by resolved photon-photon interactions.Comment: 17 pages, 15 figure

    Dynamics of zonal flow-like structures in the edge of the TJ-II stellarator

    Full text link
    The dynamics of fluctuating electric field structures in the edge of the TJ-II stellarator, that display zonal flow-like traits, is studied. These structures have been shown to be global and affect particle transport dynamically [J.A. Alonso et al., Nucl. Fus. 52 063010 (2012)]. In this article we discuss possible drive (Reynolds stress) and damping (Neoclassical viscosity, geodesic transfer) mechanisms for the associated ExB velocity. We show that: (a) while the observed turbulence-driven forces can provide the necessary perpendicular acceleration, a causal relation could not be firmly established, possibly because of the locality of the Reynolds stress measurements, (b) the calculated neoclassical viscosity and damping times are comparable to the observed zonal flow relaxation times, and (c) although an accompanying density modulation is observed to be associated to the zonal flow, it is not consistent with the excitation of pressure side-bands, like those present in geodesic acoustic oscillations, caused by the compression of the ExB flow field

    Comparison between Poaceae Airborne Pollen Counts and Phl p5 Aeroallergen Quantification in South Europe

    Get PDF
    The European project HIALINE: Comparison between Poaceae Airborne Pollen Counts and Phl p5 Aeroallergen Quantification in South Europe C. Antunes1,2, R. Ferro2, R. Ribeiro2, Torres M.C.4, M.J. Velasco4H. García-Mozo4, Galán, C4 , R.Brandao1,3, M.Thibaudon5, R. Albertini6 Ugolotti. M.6, Usberti I.6, Dall’Aglio P.6 and the HIALINE team7 1DInstitute of Mediterranean Agricultural and Environmental Sciences –ICAAM, University of Évora, Portugal 2Department of Chemistry, University of Évora, Portugal 3Department of Biology, University of Évora, Portugal 4Department of Botany, Ecology and Plant Physiology, University of Córdoba 5Réseau National de l Surveillance Aerobiologique, Saint-Genis-l’Argentière, France 6Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Italy 7J.T.M. Buters, Germany, M. Thibaudon, France, M. Smith, Great Britain, C. Galan, Spain, R. Brandao and C.M. Antunes, Portugal, G. Reese, Germany, R. Albertini, Italy, L. Grewling, Poland, A. Rantio-Lehtimäki, Finland, S. Jäger and U. Berger, Austria, I. Sauliene, Lithuania, L. Cecchi, Italy Introduction: Nowadays, pollinosis is affecting a large percentage of population in countries with a western life style. The existence of allergenic activity in the atmosphere is not only associated to pollen grains and fungal spores, but also to submicronic and paucimicronic biological particles. The origin of these allergens can be due to the rupture of pollen transported in the atmosphere or to the presence of allergens from other parts of the plant making amorphous material with an allergen load. Poaceae pollen is recognized as one of the main causes of allergic disease in all Europe. In this study we have tried to compare Poaceae pollen counts in the air and Phl p 5, one of the major allergens of this family, through the use of a high-volume cascade impactor (Chemvol). This study was done in the frame of the European project HIALINE and it compares the results obtained in 2009 by 4 different partners participating in this project: in Córdoba (Spain), Évora (Portugal), Lyon (France) and Parma (Italy). Methodology: Pollen grains were sampled using a 7-day volumetric Hirst type spore trap. Chemvol high-volume cascade impactor equipped with stages PM>10µm, 10 µm>PM>2.5µm was used for detecting aeroallergens. In each stage polyurethane filters were use as an impacting substrate. Phl p 5 allergen was determined using an allergen specific ELISA. Antibodies for analysis were delivered by Allergopharma Joachim Ganzer KG, the industrial partner in this project. At each location both samplers were placed side-by-side. Results: Most of the allergen was collected in the PM>10µm fraction. Similar profiles between airborne pollen and the total allergenic load was observed during the pollen season. A good correlation was obtained between pollen count and allergen content of the air and a value of 2.5 pg/pollen grain of Poaceae was estimated. Discussion: This is the first year of this project. Nevertheless, results suggest that the allergenic load in outdoor air might be mainly due to pollen bursts. It supports the hypothesis that monitoring the allergens itself in ambient air might be an improvement in allergen exposure assessment. This work was supported in part by the European Agency for Health and Consumers EAHC, Luxembourg, under the grant agreement 2008110

    Comparison between Airborne Pollen and Aeroallergen Quantification with the ChemVol Impact Sampler. Olive pollen vs Ole e 1

    Get PDF
    Comparison between Airborne Pollen and Aeroallergen Quantification with the ChemVol Impact Sampler. Olive pollen vs Ole e 1. Torres M.C.1, C. Antunes2, M.J. Velasco1, R. Ferro2, H. García-Mozo1, R. Ribeiro2, R.Brandao3, Galán, C1 and the HIALINE team4 1Department of Botany, Ecology and Plant Physiology, University of Córdoba 2Department of Chemistry, University of Évora, Portugal 3Department of Biology, University of Évora, Portugal 4J.T.M. Buters, Germany, M. Thibaudon, France, M. Smith, Great Britain, C. Galan, Spain, R. Brandao and C. Antunes, Portugal, G. Reese, Germany, R. Albertini, Italy, L. Grewling, Poland, A. Rantio-Lehtimäki, Finland, S. Jäger and U. Berger, Austria, I. Sauliene, Lithuania, L. Cecchi, Italy Nowadays, pollinosis is affecting a large percentage of population in the countries with a western life style. The existence of allergenic activity in the atmosphere is not only associated to pollen grains and fungal spores, but also to submicronic and paucimicronic biological particles. The origin of these allergens can be due to the rupture of pollen transported in the atmosphere or to the presence of allergens from other parts of the plant making amorphous material with an allergen load. Olive pollen is recognized as one of the main causes of allergic disease in the Mediterranean area. In this study we have tried to compare olive pollen count in the air and Ole e 1 as major allergen of this species, at two different localities in South of Europe: Evora (Portugal) and Córdoba (Spain). At each location both samplers were placed side-by-side. Pollen grains have been sampled using a volumetric Hirst type spore trap. Chemvol high-volume cascade impactor equipped with stages PM>10µm, 10 µm>PM>2.5µm were used for detecting aeroallergens. Ole e 1 major allergen was determined using allergen specific ELISA´s. Similar behaviour between pollen and the total allergenic load was observed during the pollen season. Nevertheless, at some occasions, during the previous and later period of the pollen season, airborne allergenic load was detected in South Spain, due to the contributions from other Oleaceae species. For this reason the use of these two different methodologies allow a better understanding of the allergenic load in the atmosphere. This work was supported in part by the European Agency for Health and Consumers EAHC, Luxembourg, under the grant agreement 20081107

    ANALYSIS OF THE ELECTRICAL CHARACTERISTICS IN MULTIPHASE FLOW THROUGH THE WIRE-MESH SENSOR

    Get PDF
    Many studies on the characterization of electrical properties of multiphase fluid are found in the literature. One of the main motivations of these efforts has been the development of instrumentation for the measurement of volumetric fraction using electrical sensors. Although one can find a variety of instruments for that purpose, relatively few works in the open literature present studies on the best range of measurement frequency and its effect on permittivity models. An experimental and theoretical study is presented, where the best frequency to measure the volumetric fraction in two and three-phase mixtures is selected. Several permittivity models are applied to measure the volumetric fraction. The fluids used in the experiments were tap water, deionized water, mineral oil, isopropyl alcohol and hexane. Known volumes of fluids were mixed until obtaining a homogeneous mixture. The data were taken by a 1×4 wire-mesh sensor (WMS) immersed in the mixture. The WMS had a gap between planes of 1.4 mm, the wires were 3 mm apart from each other and the diameter of the wires was of 0.2 mm. The experimental system consisted of a generator, an oscilloscope and conditioning circuits (formed by operational amplifiers). A frequency scan was performed between 7000 Hz and 20 MHz for each mixture. A total of 60 logarithmically spaced frequencies were applied

    The European project HIALINE: Comparison between Poaceae Airborne Pollen Counts and Phl p5 Aeroallergen Quantification in SW Europe

    Get PDF
    The European project HIALINE: Comparison between Poaceae Airborne Pollen Counts and Phl p5 Aeroallergen Quantification in SW Europe C. Antunes1*, R. Ferro1, R. Ribeiro1, Torres M.C.3, M.J. Velasco3H. García-Mozo3, Galán, C3 , R.Brandao2, M.Thibaudon4 and the HIALINE team5 1Department of Chemistry, University of Évora, Portugal 2Department of Biology, University of Évora, Portugal 3Department of Botany, Ecology and Plant Physiology, University of Córdoba 4Réseau National de l Surveillance Aerobiologique, Saint-Genis-l’Argentière, France 5J.Buters, Germanny, M. Thibaudon, France, M. Smith, Great Britain, C. Galan, Spain, R. Brandao and C.M. Antunes, Portugal, R. Albertini, Italy, L. Grewling, Poland, A. Rantio-Lehtimäki, Finland, S. Jäger and U. Berger, Austria, I. Sauliene, Lithuania, L. Cecchi, Italy * Presenting Author: Antunes, C. Department of Chemistry, University of Évora, Portugal. Phone +351 266745319 ; email: [email protected] Introduction: Nowadays, pollinosis is affecting in a large percentage of population in the developed countries. The existence of allergenic activity in the atmosphere is not only associated to pollen grains and fungal spores, but also to submicronic and paucimicronic biological particles. The origin of these allergens can be due to the rupture of pollen transported in the atmosphere or to the presence of allergens from other parts of the plant making amorphous material with allergenic load. Poaceae pollen is recognized as one of the main causes of allergic disease in all Europe. In this study we have tried to compare Poaceae pollen counts in the air and Phl p 5, one of the major allergens of this family, through the use of a high-volume cascade impactor (Chemvol). This study was done in the frame of the European project HIALINE and it compares the results obtained in 2009 by 3 different partners participating in this project: in Córdoba (Spain), Évora (Portugal) and Lyon (France). Methodology: Pollen grains have been taken out using a 7-day volumetric Hirst type spore trap. Chemvol high-volume cascade impactor equipped with stages PM>10µm, 10 µm>PM>2.5µm were used for detecting aeroallergens. In each stage polyurethane filters were applied. Phl p5 allergen was determined using allergen specific ELISA´s. Antibodies for analysis are delivered by Allergopharma Joachim Ganzer KG, the industrial partner in this project. Both samplers were placed side-by-side. Results: Most of the allergen was collected in the PM>10µm fraction. Similar profiles between airborne pollen and the total allergenic load was observed during the pollen season. A good correlation was obtained and a value of 2.5 pg/pollen grain of Poaceae was estimated. Discussion: These results suggest that the allergenic load in outdoor air might be mainly due to pollen bursts. It supports the hypothesis that monitoring the allergens itself in ambient air might be an improvement in allergen exposure assessment. This work was supported in part by the European Agency for Health and Consumers EAHC, Luxembourg, under the grant agreement 2008110

    Minimum Conductivity and Evidence for Phase Transitions in Ultra-clean Bilayer Graphene

    Get PDF
    Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number of singly- and doubly-gated bilayer graphene (BLG) devices, we show that an insulating state appears only in devices with high mobility and low extrinsic doping. This insulating state has an associated transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly suggesting a gapped broken symmetry state that is destroyed by very weak disorder. The transition to the intrinsic broken symmetry state can be tuned by disorder, out-of-plane electric field, or carrier density

    Radiative decays of the (0+,1+)(0^+,1^+) strange-bottom mesons

    Full text link
    In this article, we assume that the (0+,1+)(0^+,1^+) strange-bottom mesons are the conventional bsˉb\bar{s} mesons, and calculate the electromagnetic coupling constants dd, g1g_1, g2g_2 and g3g_3 using the light-cone QCD sum rules. Then we study the radiative decays Bs0BsγB_{s0}\to B_s^* \gamma, Bs1BsγB_{s1}\to B_s \gamma, Bs1BsγB_{s1}\to B_s^* \gamma and Bs1Bs0γB_{s1}\to B_{s0} \gamma, and observe that the widths are rather narrow. We can search for the (0+,1+)(0^+,1^+) strange-bottom mesons in the invariant Bsπ0B_s \pi^0 and Bsπ0B^*_s \pi^0 mass distributions in the strong decays or in the invariant BsγB_s^*\gamma and BsγB_s\gamma mass distributions in the radiative decays.Comment: 16 pages, 4 figures, revised versio

    Some thoughts about nonequilibrium temperature

    Full text link
    The main objective of this paper is to show that, within the present framework of the kinetic theoretical approach to irreversible thermodynamics, there is no evidence that provides a basis to modify the ordinary Fourier equation relating the heat flux in a non-equilibrium steady state to the gradient of the local equilibrium temperature. This fact is supported, among other arguments, through the kinetic foundations of generalized hydrodynamics. Some attempts have been recently proposed asserting that, in the presence of non-linearities of the state variables, such a temperature should be replaced by the non-equilibrium temperature as defined in Extended Irreversible Thermodynamics. In the approximations used for such a temperature there is so far no evidence that sustains this proposal.Comment: 13 pages, TeX, no figures, to appear in Mol. Phy
    corecore