39 research outputs found

    Development of novel thin film composite reverse osmosis membranes for desalination

    Get PDF
    Microporous Polyetherimide (PEI) membranes were prepared by wet phase inversion at different temperatures. The thin film composites (TFC) of polyamide on microporous PEI were prepared using meta-Phenylenediamine (MPD) and 1,3,5-Benzenetricarbonyl chloride (BTC). The ATR FTIR characterization showed the formation of polyamide (PA) on microporous PEI membrane, whereas scanning electron microscopy (SEM) revealed that a thin film of polyamide is formed on microporous PEI. The cross-sectional SEM of PEI prepared at 60 °C, showed finger like morphology and sparingly distributed balloon like morphology for PEI synthesized at 80 °C. The performance of PEI membranes and PA TFCs were ascertained by studying permeation of water and rejection of sodium chloride by reverse osmosis. The polyamide TFC with hydrophobic PEI support structures exhibited permeation of 28 to 50 lm-2h-1, with 98 – 95 % 2000 ppm NaCl rejection at 60 bar pressure

    Metal-oxide nanotubes functional material tailored for membrane water/wastewater treatment

    Get PDF
    Titanium Dioxide Nano-Tubes (TNTs) synthesized by hydrothermal method were used to prepare new polysulfone thin film nanocomposite (TFN) membranes. The TFN membranes contained different TNTs proportions (0.1, 0.3 and 0.5 wt. %). A polyamide selective layer was formed on top of the TFN membrane surface using interfacial polymerization (IP). Nanofiltration experiments were performed using NaCl and MgSO4 salts solutions. The water flux was found to increase with increased TNT loading in the membrane due to high porosity of embedded nanoparticles and the formation of enlarged pores. The antifouling behaviour of the membrane was tested by bovine serum albumin (BSA) solution and found to improve with increased TNT content in the membrane. - 2019 IOP Publishing Ltd. All rights reserved.This paper was made possible by an NPRP10-0127-170270 and NPRP8-1115-2-473 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Comparative power demand of mechanical and aeration imposed shear in an immersed membrane bioreactor

    Get PDF
    The power demanded for the application of mechanically-imposed shear on an immersed flat sheet (iFS) membrane bioreactor (MBR) has been compared to that of conventional membrane air scouring. Literature correlations based on the Ostwald model were used to define the rheological characteristics of an MBR sludge. The correlation of specific power demand (, in Watts per m2 membrane area) with shear rate γ in s-1 was developed from first principles through a consideration of the force balance on the system in the case of mechanically-imposed shear. The corresponding aeration imposed shear correlation was interpreted from literature information. The analysis revealed the energy required to impose a shear mechanically through oscillation (or reciprocation) of the membrane to be between 20 and 70% less than that demanded for providing the same shear by conventional aeration of the immersed membrane. The energy saving increases with decreasing shear in accordance with a power demand ratio (aeration:mechanical) of 1400γ-1.4 for a specific sludge rheology. Whilst the absolute value is dependent on the sludge rheology, the aeration:mechanical power demand ratio is determined by the difference in the two exponents in the respective correlations between and γ. Consequently, aeration-imparted shear becomes energetically favoured beyond some threshold shear rate value (∼180 s-1, based on the boundary conditions applied in the current study). The outcomes qualitatively corroborate findings from the limited practical measurement of energy demand in MBRs fitted with reciprocating immersed membranes

    The impact of mechanical shear on membrane flux and energy demand

    Get PDF
    The use of forced mechanical shear for both disc membranes (rotating and vibrating disc filtration, RDF and VDF respectively) and hollow fibres (vibrating HF membranes, VHFM) is reviewed. These systems have been extensively studied and, in the case of the disc membranes, have reached commercialisation and proven effective in achieving transmembrane pressure (TMP) control for various challenging feed waters. The effects of operating conditions, namely shear rate as enhanced by rotation and vibration speed and TMP, and feed water quality on the filtration flux and specific energy consumption are quantified as part of the review. A new relationship is revealed between the two empirical constants governing the classical relationship between membrane flux and shear rate, and a mathematical correlation proposed accordingly. A study of available information on energy reveals that operation at lower shear rates (i.e. rotation or vibration speeds) and more conservative fluxes leads to lower specific energy demands in kWh m−3 permeate, albeit with a larger required membrane area

    Clogging vs. fouling in immersed membrane bioreactors

    Get PDF
    Whilst the fouling of MBR membrane surfaces has been very extensively explored by the academic community, there is an increasingly widespread recognition by practitioners of the issue of clogging of membrane channels with sludge solids, sometimes termed “sludging”. The study undertaken has quantified this phenomenon using a bespoke test cell allowing a flat sheet membrane channel to be viewed directly during operation and the accumulated solids determined by digital image processing. Sludging behaviour has then been correlated both with the sludge properties, from sludge samples taken from both an industrial and municipal MBR, and the permeability decline rate data. The work has revealed the expected trends in fouling propensity, as quantified by the exponent n of the Δp/Δt = m.exp(nJ) correlation from classical flux-step tests. With zero membrane aeration the industrial samples exhibited sludging, the filling of the complete thickness of the membrane channel with sludge solids, whereas for municipal sludge the solids formed a cake layer which did not fill the channel. In the absence of sludging the permeability decline followed the expected pattern of increasing at the elevated soluble COD and capillary suction time values of the industrial sludge, compared with municipal sludge at the same solids concentration range (8–12 g.L−1). However, there was no evident correlation between fouling (permeability decline without sludging) and sludging: incipient sludging did not appear to influence permeability, though can be assumed to negatively impact on long-term operation, or relate to the sCOD concentration. Sludging instead appeared to depend on the sludge physical properties, and primarily the viscosity: sludge samples at high viscosities were found to exhibit a different air-scour pattern to that at normal MLSS concentrations. Outcomes suggest that sludging is caused by rheological conditions promoting bubble coalescence and bubble stream constriction, reducing the exposure of the membrane surface to scouring air

    Cleaning of ceramic membranes for produced water filtration

    Get PDF
    The application of ceramic microfiltration membranes to the tertiary treatment of produced water from an Arabian Gulf oilfield has been studied using a dedicated pilot plant. Studies were based on a previously published protocol in which the retentate stream was recycled so as to successively increase the feed concentration throughout the experimental run. Chemical cleaning in place (CIP) was applied between each run and the flux and permeability recovery recorded for various cleaning protocols studied, the CIP being based on the combination of caustic soda (NaOH) and citric acid. Surface analysis of the membrane, and specifically its hydrophilicity, was also conducted. Results indicated the main influencing factor on permeability recovery from the CIP to be the employment of backflushing during the CIP itself. A final flux of 700 L m−2 h−1 was sustained through the application of 6 wt% NaOH with 6 wt% citric acid combined with backflushing at approximately twice the rate of the filtration cycle flux. A consideration of the impact of this flux value on the viability of two commercially-available ceramic membrane technologies indicated the footprint incurred to be slightly lower than that of the upstream induced gas flotation technology and corroborated a previously published estimate. The flux was sustained despite surface analysis indicating a loss of the innate hydrophilicity of the ceramic membrane

    Kinetics of CO 2 reaction with N-methyldiethanolamine and aminobutanol using stopped flow technique

    No full text
    Removal of carbon dioxide (CO 2 ) from natural gas streams is mandatory to avoid pipeline corrosion, increase the heating value of the gas and reduce the gas volume in case of liquefied natural gas (LNG). The use of N-Methyldiethanolamine (MDEA) solution combined with other rate promoters such as Piperazine (PZ) is a common practice in Gas treatment technology. In this work, the use of Aminobutanol (AB) mixed with MDEA for the removal of (CO 2 ) from natural gas streams is presented. The reaction kinetics of (CO 2 ) with mixtures of MDEA and AB was investigated using stopped flow technique. The experiments were performed over a temperature range of 293 to 313 K and solution concentration of 0.5 and 1 moles/l in different MDEA/AB proportions. Obtained kinetics data were interpreted using zwitterion mechanisms for the primary amine AB. The individual rate constants of the participating reactions were regressed and their corresponding activation energies were estimated. ? Published under licence by IOP Publishing Ltd.This paper was made possible by an NPRP Grant #7-1154-2?433 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu
    corecore