799 research outputs found

    Rotating Solution of Einstein-Maxwell Dilaton Gravity with Unusual Asymptotics

    Full text link
    We study electrically charged, dilaton black holes, which possess infinitesimal angular momentum in the presence of one or two Liouville type potentials. These solutions are neither asymptotically flat nor (anti)-de Sitter. Some properties of the solutions are discussed.Comment: 11 pages, Accepted (Int. J. Theor. Phys.

    Interaction-induced impeding of decoherence and anomalous diffusion

    Full text link
    We study how the interplay of dissipation and interactions affects the dynamics of a bosonic many-body quantum system. In the presence of both dissipation and strongly repulsive interactions, observables such as the coherence and the compressibility display three dynamical regimes: an initial exponential variation followed by a power-law regime and finally a slow exponential convergence to their asymptotic values corresponding to the infinite temperature state. These very long-time scales arise as dissipation forces the population of states disfavored by interactions. The long-time, strong coupling dynamics are understood by performing a mapping onto a classical diffusion process displaying non-Brownian behavior. While both dissipation and strong interactions tend to suppress coherence when acting separately, we find that strong interaction impedes the decoherence process generated by the dissipation.Comment: 5 pages, 3 figure

    New hairy black hole solutions with a dilaton potential

    Full text link
    We consider black hole solutions with a dilaton field possessing a nontrivial potential approaching a constant negative value at infinity. The asymptotic behaviour of the dilaton field is assumed to be slower than that of a localized distribution of matter. A nonabelian SU(2) gauge field is also included in the total action. The mass of the solutions admitting a power series expansion in 1/r1/r at infinity and preserving the asymptotic anti-de Sitter geometry is computed by using a counterterm subtraction method. Numerical arguments are presented for the existence of hairy black hole solutions for a dilaton potential of the form V(ϕ)=C1exp(2α1ϕ)+C2exp(2α2ϕ)+C3V(\phi)=C_1 \exp(2\alpha_1 \phi)+C_2 \exp(2\alpha_2 \phi)+C_3, special attention being paid to the case of N=4,D=4{\cal N}=4, D=4 gauged supergravity model of Gates and Zwiebach.Comment: 12 pages, 4 figures; v2:references added, typos corrected, small changes in Section

    Do naked singularities generically occur in generalized theories of gravity?

    Get PDF
    A new mechanism for causing naked singularities is found in an effective superstring theory. We investigate the gravitational collapse in a spherically symmetric Einstein-Maxwell-dilaton system in the presence of a pure cosmological constant "potential", where the system has no static black hole solution. We show that once gravitational collapse occurs in the system, naked singularities necessarily appear in the sense that the field equations break down in the domain of outer communications. This suggests that in generalized theories of gravity, the non-minimally coupled fields generically cause naked singularities in the process of gravitational collapse if the system has no static or stationary black hole solution.Comment: 4 pages including 2 eps figures, to be published in Physical Review Letter

    Options for Scaling up Community-Based Health Insurance for Rural Communities in Armenia

    Get PDF
    This paper summarises the results of a study which examined international experience with regard to community-based health financing (CBHF) schemes, scaling up CBHF schemes, and the feasibility of scaling up community-based health insurance (CBHI) in Armenia. It was based on a literature review of international experience and qualitative research in Armenia. The recommendations derived from this study have relevance both for Armenia and for the use of CBHI schemes as a tool for promoting pro-poor health system reform in low-resource settings more generally

    No-scalar hair conjecture in asymptotic de-Sitter spacetime

    Full text link
    We discuss the no-hair conjecture in the presence of a cosmological constant. For the firststep the real scalar field is considered as the matter field and the spacetime is assumed to be static spherically symmetric. If the scalar field is massless or has a convex potential such as a mass term, it is proved that there is no regular black hole solution. For a general positive potential, we search for black hole solutions which support the scalar field with a double well potential, and find them by numerical calculations. The existence of such solutions depends on the values of the vacuum expectation value and the self-coupling constant of the scalar field. When we take the zero horizon radius limit, the solution becomes a boson star like solution which we found before. However new solutions are found to be unstable against the linear perturbation. As a result we can conclude that the no-scalar hair conjecture holds in the case of scalar fields with a convex or double well potential.Comment: 9 pages, 2 Postscript figure

    Dyonic dilaton black holes

    Get PDF
    The properties of static spherically symmetric black holes, which are both electrically and magnetically charged, and which are coupled to the dilaton in the presence of a cosmological constant, Lambda, are considered. It is shown that apart from the Reissner-Nordstrom-de Sitter solution with constant dilaton, such solutions do not exist if Lambda > 0 (in arbitrary spacetime dimension >=4 ). However, asymptotically anti-de Sitter dyonic black hole solutions with a non-trivial dilaton do exist if Lambda < 0. Both these solutions and the asymptotically flat (Lambda = 0) solutions are studied numerically for arbitrary values of the dilaton coupling parameter, g_0, in four dimensions. The asymptotically flat solutions are found to exhibit two horizons if g_0 = 0, 1, \sqrt{3}, \sqrt{6}, ..., \sqrt{n(n+1)/2},..., and one horizon otherwise. For asymptotically anti-de Sitter solutions the result is similar, but the corresponding values of g_0 are altered in a non-linear fashion which depends on Lambda and the mass and charges of the black holes. All dyonic solutions with Lambda <= 0 are found to have zero Hawking temperature in the extreme limit, however, regardless of the value of g_0.Comment: 24 pages, phyzzx, epsf, 7 in-text figures. Small addition to introduction, and a few extra reference

    General Brane Geometries from Scalar Potentials: Gauged Supergravities and Accelerating Universes

    Full text link
    We find broad classes of solutions to the field equations for d-dimensional gravity coupled to an antisymmetric tensor of arbitrary rank and a scalar field with non-vanishing potential. Our construction generates these configurations from the solution of a single nonlinear ordinary differential equation, whose form depends on the scalar potential. For an exponential potential we find solutions corresponding to brane geometries, generalizing the black p-branes and S-branes known for the case of vanishing potential. These geometries are singular at the origin with up to two (regular) horizons. Their asymptotic behaviour depends on the parameters of the model. When the singularity has negative tension or the cosmological constant is positive we find time-dependent configurations describing accelerating universes. Special cases give explicit brane geometries for (compact and non-compact) gauged supergravities in various dimensions, as well as for massive 10D supergravity, and we discuss their interrelation. Some examples lift to give new solutions to 10D supergravity. Limiting cases with a domain wall structure preserve part of the supersymmetries of the vacuum. We also consider more general potentials, including sums of exponentials. Exact solutions are found for these with up to three horizons, having potentially interesting cosmological interpretation. We give several additional examples which illustrate the power of our techniques.Comment: 54 pages, 6 figures. Uses JHEP3. Published versio

    Development and characterization of the readout system for POLARBEAR-2

    Full text link
    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Published in Proceedings of SPIE Volume 915

    Band termination in the N=Z Odd-Odd Nucleus 46V

    Full text link
    High spin states in the odd-odd N=Z nucleus 46V have been identified. At low spin, the T=1 isobaric analogue states of 46Ti are established up to I = 6+. Other high spin states, including the band terminating state, are tentatively assigned to the same T=1 band. The T=0 band built on the low-lying 3+ isomer is observed up to the 1f7/2-shell termination at I=15. Both signatures of a negative parity T=0 band are observed up to the terminating states at I = 16- and I = 17-, respectively. The structure of this band is interpreted as a particle-hole excitation from the 1d3/2 shell. Spherical shell model calculations are found to be in excellent agreement with the experimental results.Comment: 5 pages, 4 figure
    corecore