3,198 research outputs found
Renormalization Group Study of the Intrinsic Finite Size Effect in 2D Superconductors
Vortices in a thin-film superconductor interact logarithmically out to a
distance on the order of the two-dimensional (2D) magnetic penetration depth
, at which point the interaction approaches a constant. Thus,
because of the finite , the system exhibits what amounts to an
{\it intrinsic} finite size effect. It is not described by the 2D Coulomb gas
but rather by the 2D Yukawa gas (2DYG). To study the critical behavior of the
2DYG, we map the 2DYG to the massive sine-Gordon model and then perform a
renormalization group study to derive the recursion relations and to verify
that is a relevant parameter. We solve the recursion relations
to study important physical quantities for this system including the
renormalized stiffness constant and the correlation length. We also address the
effect of current on this system to explain why finite size effects are not
more prevalent in experiments given that the 2D magnetic penetration depth is a
relevant parameter.Comment: 8 pages inRevTex, 5 embedded EPS figure
The Current-Temperature Phase Diagram of Layered Superconductors
The behavior of clean layered superconductors in the presence of a finite
electric current and in zero-magnetic field behavior is addressed. The
structure of the current temperature phase diagram and the properties of each
of the four regions will be explained. We will discuss the expected current
voltage and resistance characteristics of each region as well as the effects of
finite size and weak disorder on the phase diagram. In addition, the reason for
which a weakly non-ohmic region exists above the transition temperature will be
explained.Comment: 8 pages (RevTeX), 4 encapsulated postscript figure
Enzymes as Feed Additive to Aid in Responses Against Eimeria Species in Coccidia-Vaccinated Broilers Fed Corn-Soybean Meal Diets with Different Protein Levels
This research aimed to evaluate the effects of adding a combination of exogenous enzymes to starter diets varying in protein content and fed to broilers vaccinated at day of hatch with live oocysts and then challenged with mixed Eimeria spp. Five hundred four 1-d-old male Cobb-500 chickens were distributed in 72 cages. The design consisted of 12 treatments. Three anticoccidial control programs [ionophore (IO), coccidian vaccine (COV), and coccidia-vaccine + enzymes (COV + EC)] were evaluated under 3 CP levels (19, 21, and 23%), and 3 unmedicated-uninfected (UU) negative controls were included for each one of the protein levels. All chickens except those in unmedicated-uninfected negative controls were infected at 17 d of age with a mixed oral inoculum of Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Live performance, lesion scores, oocyst counts, and samples for gut microflora profiles were evaluated 7 d postinfection. Ileal digestibility of amino acids (IDAA) was determined 8 d postinfection. Microbial communities (MC) were analyzed by G + C%, microbial numbers were counted by flow cytometry, and IgA concentrations were measured by ELISA. The lowest CP diets had poorer (P ≤ 0.001) BW gain and feed conversion ratio in the preinfection period. Coccidia-vaccinated broilers had lower performance than the ones fed ionophore diets during pre- and postchallenge periods. Intestinal lesion scores were affected (P ≤ 0.05) by anticoccidial control programs, but responses changed according to gut section. Feed additives or vaccination had no effect (P ≥ 0.05) on IDAA, and diets with 23% CP had the lowest (P ≤ 0.001) IDAA. Coccidial infection had no effect on MC numbers in the ileum but reduced MC numbers in ceca and suppressed ileal IgA production. The COV + EC treatment modulated MC during mixed coccidiosis infection but did not significantly improve chicken performance. Results indicated that feed enzymes may be used to modulate the gut microflora of cocci-vaccinated broiler chickens
Flux Lattice Melting and Lowest Landau Level Fluctuations
We discuss the influence of lowest Landau level (LLL) fluctuations near
H_{c2}(T) on flux lattice melting in YBaCuO (YBCO). We
show that the specific heat step of the flux lattice melting transition in YBCO
single crystals can be attributed largely to the degrees of freedom associated
with LLL fluctuations. These degrees of freedom have already been shown to
account for most of the latent heat. We also show that these results are a
consequence of the correspondence between flux lattice melting and the onset of
LLL fluctuations.Comment: 4 pages, 2 embedded figure
Current-voltage characteristics of the two-dimensional XY model with Monte Carlo dynamics
Current-voltage characteristics and the linear resistance of the
two-dimensional XY model with and without external uniform current driving are
studied by Monte Carlo simulations. We apply the standard finite-size scaling
analysis to get the dynamic critical exponent at various temperatures. From
the comparison with the resistively-shunted junction dynamics, it is concluded
that is universal in the sense that it does not depend on details of
dynamics. This comparison also leads to the quantification of the time in the
Monte Carlo dynamic simulation.Comment: 5 pages in two columns including 5 figures, to appear in PR
Renormalization group approach to layered superconductors
A renormalization group theory for a system consisting of coupled
superconducting layers as a model for typical high-temperature superconducters
is developed. In a first step the electromagnetic interaction over infinitely
many layers is taken into account, but the Josephson coupling is neglected. In
this case the corrections to two-dimensional behavior due to the presence of
the other layers are very small. Next, renormalization group equations for a
layered system with very strong Josephson coupling are derived, taking into
account only the smallest possible Josephson vortex loops. The applicability of
these two limiting cases to typical high-temperature superconductors is
discussed. Finally, it is argued that the original renormalization group
approach by Kosterlitz is not applicable to a layered system with intermediate
Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by
conventional mail; accepted for publication in Phys. Rev.
Evidence for Kosterlitz-Thouless type orientational ordering of CFBr monolayers physisorbed on graphite
Monolayers of the halomethane CFBr adsorbed on graphite have been
investigated by x-ray diffraction. The layers crystallize in a commensurate
triangular lattice. On cooling they approach a three-sublattice
antiferroelectric pattern of the in-plane components of the dipole moments. The
ordering is not consistent with a conventional phase transition, but points to
Kosterlitz-Thouless behavior. It is argued that the transition is described by
a 6-state clock model on a triangular lattice with antiferromagnetic nearest
neighbor interactions which is studied with Monte-Carlo simulations. A
finite-size scaling analysis shows that the ordering transition is indeed in
the KT universality class.Comment: 4 pages, 5 figure
3D Lowest Landau Level Theory Applied to YBCO Magnetization and Specific Heat Data: Implications for the Critical Behavior in the H-T Plane
We study the applicability of magnetization and specific heat equations
derived from a lowest-Landau-level (LLL) calculation, to the high-temperature
superconducting (HTSC) materials of the YBaCuO (YBCO)
family. We find that significant information about these materials can be
obtained from this analysis, even though the three-dimensional LLL functions
are not quite as successful in describing them as the corresponding
two-dimensional functions are in describing data for the more anisotropic HTSC
Bi- and Tl-based materials. The results discussed include scaling fits, an
alternative explanation for data claimed as evidence for a second order flux
lattice melting transition, and reasons why 3DXY scaling may have less
significance than previously believed. We also demonstrate how 3DXY scaling
does not describe the specific heat data of YBCO samples in the critical
region. Throughout the paper, the importance of checking the actual scaling
functions, not merely scaling behavior, is stressed.Comment: RevTeX; 10 double-columned pages with 7 figures embedded. (A total of
10 postscript files for the figures.) Submitted to Physical Review
Dynamic scaling for 2D superconductors, Josephson junction arrays and superfluids
The value of the dynamic critical exponent is studied for two-dimensional
superconducting, superfluid, and Josephson Junction array systems in zero
magnetic field via the Fisher-Fisher-Huse dynamic scaling. We find
, a relatively large value indicative of non-diffusive
dynamics. Universality of the scaling function is tested and confirmed for the
thinnest samples. We discuss the validity of the dynamic scaling analysis as
well as the previous studies of the Kosterlitz-Thouless-Berezinskii transition
in these systems, the results of which seem to be consistent with simple
diffusion (). Further studies are discussed and encouraged.Comment: 19 pages in two-column RevTex, 8 embedded EPS figure
Precision calculation of magnetization and specific heat of vortex liquids and solids in type II superconductors
A new systematic calculation of magnetization and specific heat contributions
of vortex liquids and solids (not very close to the melting line) is presented.
We develop an optimized perturbation theory for the Ginzburg - Landau
description of thermal fluctuations effects in the vortex liquids. The
expansion is convergent in contrast to the conventional high temperature
expansion which is asymptotic. In the solid phase we calculate first two orders
which are already quite accurate. The results are in good agreement with
existing Monte Carlo simulations and experiments. Limitations of various
nonperturbative and phenomenological approaches are noted. In particular we
show that there is no exact intersection point of the magnetization curves both
in 2D and 3D.Comment: 4 pages, 3 figure
- …