119 research outputs found
Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity
We explore the relation between positivity of the energy constraints in
conformal field theories and causality in their dual gravity description. Our
discussion involves CFTs with different central charges whose description, in
the gravity side, requires the inclusion of quadratic curvature corrections. It
is enough, indeed, to consider the Gauss-Bonnet term. We find that both sides
of the AdS/CFT correspondence impose a restriction on the Gauss-Bonnet
coupling. In the case of 6d supersymmetric CFTs, we show the full matching of
these restrictions. We perform this computation in two ways. First by
considering a thermal setup in a black hole background. Second by scrutinizing
the scattering of gravitons with a shock wave in AdS. The different helicities
provide the corresponding lower and upper bounds. We generalize these results
to arbitrary higher dimensions and comment on some hints and puzzles they
prompt regarding the possible existence of higher dimensional CFTs and the
extent to which the AdS/CFT correspondence would be valid for them.Comment: 31 pages, 5 figures; v2: typos fixed, cosmetic amendments and
references adde
Generalized Weyl solutions in d=5 Einstein-Gauss-Bonnet theory: the static black ring
We argue that the Weyl coordinates and the rod-structure employed to
construct static axisymmetric solutions in higher dimensional Einstein gravity
can be generalized to the Einstein-Gauss-Bonnet theory. As a concrete
application of the general formalism, we present numerical evidence for the
existence of static black ring solutions in Einstein-Gauss-Bonnet theory in
five spacetime dimensions. They approach asymptotically the Minkowski
background and are supported against collapse by a conical singularity in the
form of a disk. An interesting feature of these solutions is that the
Gauss-Bonnet term reduces the conical excess of the static black rings.
Analogous to the Einstein-Gauss-Bonnet black strings, for a given mass the
static black rings exist up to a maximal value of the Gauss-Bonnet coupling
constant . Moreover, in the limit of large ring radius, the suitably
rescaled black ring maximal value of and the black string maximal
value of agree.Comment: 43 pages, 14 figure
Perturbations of Gauss-Bonnet Black Strings in Codimension-2 Braneworlds
We derive the Lichnerowicz equation in the presence of the Gauss-Bonnet term.
Using the modified Lichnerowicz equation we study the metric perturbations of
Gauss-Bonnet black strings in Codimension-2 Braneworlds.Comment: 26 pages, no figures, clarifying comments and one reference added, to
be published in JHE
Dynamical model for spindown of solar-type stars
After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength versus rotation rate, and frequency of magnetic field versus rotation rate. For fast rotating stars we find that: (i) there is an exponential spindown , with t measured in Gyr; (ii) magnetic activity saturates for higher rotation rate; (iii) . For slow rotating stars we find: (i) a power-law spindown ; (ii) that magnetic activity scales roughly linearly with rotation rate; (iii) . The results obtained from our investigations are in good agreement with observations. The Vaughan–Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution
Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum
Static asymptotically Lifshitz wormholes and black holes in vacuum are shown
to exist for a class of Lovelock theories in d=2n+1>7 dimensions, selected by
requiring that all but one of their n maximally symmetric vacua are AdS of
radius l and degenerate. The wormhole geometry is regular everywhere and
connects two Lifshitz spacetimes with a nontrivial geometry at the boundary.
The dynamical exponent z is determined by the quotient of the curvature radii
of the maximally symmetric vacua according to n(z^2-1)+1=(l/L)^2, where L
corresponds to the curvature radius of the nondegenerate vacuum. Light signals
are able to connect both asymptotic regions in finite time, and the
gravitational field pulls towards a fixed surface located at some arbitrary
proper distance to the neck. The asymptotically Lifshitz black hole possesses
the same dynamical exponent and a fixed Hawking temperature given by T=z/(2^z
pi l). Further analytic solutions, including pure Lifshitz spacetimes with a
nontrivial geometry at the spacelike boundary, and wormholes that interpolate
between asymptotically Lifshitz spacetimes with different dynamical exponents
are also found.Comment: 19 pages, 1 figur
Lovelock theories, holography and the fate of the viscosity bound
We consider Lovelock theories of gravity in the context of AdS/CFT. We show
that, for these theories, causality violation on a black hole background can
occur well in the interior of the geometry, thus posing more stringent
constraints than were previously found in the literature. Also, we find that
instabilities of the geometry can appear for certain parameter values at any
point in the geometry, as well in the bulk as close to the horizon. These new
sources of causality violation and instability should be related to CFT
features that do not depend on the UV behavior. They solve a puzzle found
previously concerning unphysical negative values for the shear viscosity that
are not ruled out solely by causality restrictions. We find that, contrary to
previous expectations, causality violation is not always related to positivity
of energy. Furthermore, we compute the bound for the shear viscosity to entropy
density ratio of supersymmetric conformal field theories from d=4 till d=10 -
i.e., up to quartic Lovelock theory -, and find that it behaves smoothly as a
function of d. We propose an approximate formula that nicely fits these values
and has a nice asymptotic behavior when d goes to infinity for any Lovelock
gravity. We discuss in some detail the latter limit. We finally argue that it
is possible to obtain increasingly lower values for the shear viscosity to
entropy density ratio by the inclusion of more Lovelock terms.Comment: 42 pages, 17 figures, JHEP3.cls. v2: reference adde
The nature of singularity in multidimensional anisotropic Gauss-Bonnet cosmology with a perfect fluid
We investigate dynamics of (4+1) and (5+1) dimensional flat anisotropic
Universe filled by a perfect fluid in the Gauss-Bonnet gravity. An analytical
solutions valid for particular values of the equation of state parameter
have been found. For other values of structure of cosmological
singularity have been studied numerically. We found that for the
singularity is isotropic. Several important differences between (4+1) and (5+1)
dimensional cases are discussed.Comment: 8 pages, 2 fig
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
- …