1,189 research outputs found
Determination of phytoextraction potential of plant speciesfor toxic elements in soils of abandoned sulphide-mining areas
This study has determined contamination levels in soils and plants from the Sa˜o Domingos mining area, Portugal, by k0-INAA. Total concentrations of As, Sb, Cr, Hg, Cu, Zn and Fe in soils were very high, exceeding the maximum limits in Portuguese legislation. Concentrations of toxic elements like As, Sb and Zn were highest in roots of Erica andevalensis, Juncus acutus, Agrostis castellana and Nicotiana glauca. Additionally, As, Br, Cr, Fe, Sb and Zn in all organs of most plants were above toxicity levels.
Those species that accumulated relatively high concentrations of toxic elements in roots (and tops) may be cultivated for phytostabilisation of similar areas
Resonant Energy Exchange between Atoms in Dispersing and Absorbing Surroundings
Within the framework of quantization of the macroscopic electromagnetic
field, a master equation describing both the resonant dipole-dipole interaction
(RDDI) and the resonant atom-field interaction (RAFI) in the presence of
dispersing and absorbing macroscopic bodies is derived, with the relevant
couplings being expressed in terms of the surroundings-assisted Green tensor.
It is shown that under certain conditions the RDDI can be regarded as being
governed by an effective Hamiltonian. The theory, which applies to both weak
and strong atom-field coupling, is used to study the resonant energy exchange
between two (two-level) atoms sharing initially a single excitation. In
particular, it is shown that in the regime of weak atom-field coupling there is
a time window, where the energy transfer follows a transfer-rate law of the
type obtained by ordinary second-order perturbation theory. Finally, the
spectrum of the light emitted during the energy transfer is studied and the
line splittings are discussed.Comment: 9 pages, 5 figs, Proceedings of ICQO'2002, Raubichi, to appear in
Optics and Spectroscop
Oscillator model for dissipative QED in an inhomogeneous dielectric
The Ullersma model for the damped harmonic oscillator is coupled to the
quantised electromagnetic field. All material parameters and interaction
strengths are allowed to depend on position. The ensuing Hamiltonian is
expressed in terms of canonical fields, and diagonalised by performing a
normal-mode expansion. The commutation relations of the diagonalising operators
are in agreement with the canonical commutation relations. For the proof we
replace all sums of normal modes by complex integrals with the help of the
residue theorem. The same technique helps us to explicitly calculate the
quantum evolution of all canonical and electromagnetic fields. We identify the
dielectric constant and the Green function of the wave equation for the
electric field. Both functions are meromorphic in the complex frequency plane.
The solution of the extended Ullersma model is in keeping with well-known
phenomenological rules for setting up quantum electrodynamics in an absorptive
and spatially inhomogeneous dielectric. To establish this fundamental
justification, we subject the reservoir of independent harmonic oscillators to
a continuum limit. The resonant frequencies of the reservoir are smeared out
over the real axis. Consequently, the poles of both the dielectric constant and
the Green function unite to form a branch cut. Performing an analytic
continuation beyond this branch cut, we find that the long-time behaviour of
the quantised electric field is completely determined by the sources of the
reservoir. Through a Riemann-Lebesgue argument we demonstrate that the field
itself tends to zero, whereas its quantum fluctuations stay alive. We argue
that the last feature may have important consequences for application of
entanglement and related processes in quantum devices.Comment: 24 pages, 1 figur
The Chalker-Coddington Network Model is Quantum Critical
We show that the localization transition in the integer quantum Hall effect
as described by the Chalker-Coddington network model is quantum critical. We
first map the anisotropic network model to the problem of diagonalizing a
one-dimensional non-Hermitian non-compact supersymmetric lattice Hamiltonian of
interacting bosons and fermions. Its behavior is investigated numerically using
the density matrix renormalization group method, and critical behavior is found
at the plateau transition. This result is confirmed by an exact, analytic,
generalization of the Lieb-Schultz-Mattis theorem.Comment: Version accepted for publication in PRL. 4 pages, 2 eps figure
Entanglement, local measurements, and symmetry
A definition of entanglement in terms of local measurements is discussed.
Viz, the maximum entanglement corresponds to the states that cause the highest
level of quantum fluctuations in all local measurements determined by the
dynamic symmetry group of the system. A number of examples illustrating this
definition is considered.Comment: 10 pages. to be published in Journal of Optics
The Effects of Electron-Electron Interactions on the Integer Quantum Hall Transitions
We study the effects of electron-electron interaction on the critical
properties of the plateau transitions in the {\it integer} quantum Hall effect.
We find the renormalization group dimension associated with short-range
interactions to be . Thus the non-interacting fixed point
(characterized and ) is stable. For the Coulomb
interaction, we find the correlation effect is a marginal perturbation at a
Hartree-Fock fixed point (, ) by dimension counting.
Further calculations are needed to determine its stability upon loop
corrections.Comment: 12 pages, Revtex, minor changes, to be published in Phys. Rev. Let
- …