26 research outputs found

    Effective spin model for the spin-liquid phase of the Hubbard model on the triangular lattice

    Full text link
    We show that the spin liquid phase of the half-filled Hubbard model on the triangular lattice can be described by a pure spin model. This is based on a high-order strong coupling expansion (up to order 12) using perturbative continuous unitary transformations. The resulting spin model is consistent with a transition from three-sublattice long-range magnetic order to an insulating spin liquid phase, and with a jump of the double occupancy at the transition. Exact diagonalizations of both models show that the effective spin model is quantitatively accurate well into the spin liquid phase, and a comparison with the Gutzwiller projected Fermi sea suggests a gapless spectrum and a spinon Fermi surface.Comment: 4 pages, 4 figures, published versions with additional dat

    Coexistence of pairing gaps in three-component Fermi gases

    Full text link
    We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously nonzero, in stark contrast to studies performed for trapped gases using local density approximation. We also discuss the role of atom number conservation in the context of a homogeneous system.Comment: Text revised, added two figures and three reference

    Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method

    Full text link
    Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb repulsion. On the other hand, they are separated each other for lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and metal-insulator transitions appears to show violation of the Luttinger sum rule. Through the metal-insulator transition, quasiparticles retain nonzero renormalization factor and finite quasi-particle weight in the both sides of the transition. This supports that the metal-insulator transition is caused not by the vanishing renormalization factor but by the relative shift of the Fermi level into the Mott gap away from the quasiparticle band, in sharp contrast with the original dynamical mean-field theory. Charge compressibility diverges at the critical end point of the first-order Lifshitz transition at finite temperatures. The origin of the divergence is ascribed to singular momentum dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure

    Can we always get the entanglement entropy from the Kadanoff-Baym equations? The case of the T-matrix approximation

    Full text link
    We study the time-dependent transmission of entanglement entropy through an out-of-equilibrium model interacting device in a quantum transport set-up. The dynamics is performed via the Kadanoff-Baym equations within many-body perturbation theory. The double occupancy <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >, needed to determine the entanglement entropy, is obtained from the equations of motion of the single-particle Green's function. A remarkable result of our calculations is that <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} > can become negative, thus not permitting to evaluate the entanglement entropy. This is a shortcoming of approximate, and yet conserving, many-body self-energies. Among the tested perturbation schemes, the TT-matrix approximation stands out for two reasons: it compares well to exact results in the low density regime and it always provides a non-negative <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >. For the second part of this statement, we give an analytical proof. Finally, the transmission of entanglement across the device is diminished by interactions but can be amplified by a current flowing through the system.Comment: 6 pages, 6 figure

    Entanglement entropy of integer Quantum Hall states in polygonal domains

    Full text link
    The entanglement entropy of the integer Quantum Hall states satisfies the area law for smooth domains with a vanishing topological term. In this paper we consider polygonal domains for which the area law acquires a constant term that only depends on the angles of the vertices and we give a general expression for it. We study also the dependence of the entanglement spectrum on the geometry and give it a simple physical interpretation.Comment: 8 pages, 6 figure

    Entanglement entropy of two disjoint blocks in XY chains

    Full text link
    We study the Renyi entanglement entropies of two disjoint intervals in XY chains. We exploit the exact solution of the model in terms of free Majorana fermions and we show how to construct the reduced density matrix in the spin variables by taking properly into account the Jordan-Wigner string between the two blocks. From this we can evaluate any Renyi entropy of finite integer order. We study in details critical XX and Ising chains and we show that the asymptotic results for large blocks agree with recent conformal field theory predictions if corrections to the scaling are included in the analysis correctly. We also report results in the gapped phase and after a quantum quench.Comment: 34 pages, 11 figure

    Universal corrections to scaling for block entanglement in spin-1/2 XX chains

    Full text link
    We consider the R\'enyi entropies Sn()S_n(\ell) in the one dimensional spin-1/2 Heisenberg XX chain in a magnetic field. The case n=1 corresponds to the von Neumann ``entanglement'' entropy. Using a combination of methods based on the generalized Fisher-Hartwig conjecture and a recurrence relation connected to the Painlev\'e VI differential equation we obtain the asymptotic behaviour, accurate to order O(3){\cal O}(\ell^{-3}), of the R\'enyi entropies Sn()S_n(\ell) for large block lengths \ell. For n=1,2,3,10 this constitutes the 3,6,10,48 leading terms respectively. The o(1) contributions are found to exhibit a rich structure of oscillatory behaviour, which we analyze in some detail both for finite nn and in the limit nn\to\infty.Comment: 25 pages, 5 figure

    Time evolution of 1D gapless models from a domain-wall initial state: SLE continued?

    Full text link
    We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain-wall. We generalize the path-integral imaginary time approach that together with boundary conformal field theory allows to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic \kappa for boundary conditions corresponding to SLE. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state.Comment: 27 pages, 10 figure

    Field dependence of the quantum ground state in the Shastry-Sutherland system SrCu2_2(BO3_3)2_2

    Full text link
    We present magnetic torque measurements on the Shastry-Sutherland quantum spin system SrCu2_2(BO3_3)2_2 in fields up to 31 T and temperatures down to 50 mK. A new quantum phase is observed in a 1 T field range above the 1/8 plateau, in agreement with recent NMR results. Since the presence of the DM coupling precludes the existence of a true Bose-Einstein condensation and the formation of a supersolid phase in SrCu2_2(BO3_3)2_2, the exact nature of the new phase in the vicinity of the plateau remains to be explained. Comparison between magnetization and torque data reveals a huge contribution of the Dzyaloshinskii-Moriya interaction to the torque response. Finally, our measurements demonstrate the existence of a supercooling due to adiabatic magnetocaloric effects in pulsed field experiments.Comment: submitted to European Physical Letter

    Quantum Quench in the Transverse Field Ising chain I: Time evolution of order parameter correlators

    Full text link
    We consider the time evolution of order parameter correlation functions after a sudden quantum quench of the magnetic field in the transverse field Ising chain. Using two novel methods based on determinants and form factor sums respectively, we derive analytic expressions for the asymptotic behaviour of one and two point correlators. We discuss quenches within the ordered and disordered phases as well as quenches between the phases and to the quantum critical point. We give detailed account of both methods.Comment: 65 pages, 21 figures, some typos correcte
    corecore