19,056 research outputs found
Femtosecond real-time probing of reactions. IX. Hydrogen-atom transfer
The real-time dynamics of hydrogen-atom-transfer processes under collisionless conditions are studied using femtosecond depletion techniques. The experiments focus on the methyl salicylate system, which exhibits ultrafast hydrogen motion between two oxygen atoms due to molecular tautomerization, loosely referred to as intramolecular ''proton'' transfer. To test for tunneling and mass effects on the excited potential surface, we also studied deuterium and methyl-group substitutions. We observe that the motion of the hydrogen, under collisionless conditions, takes place within 60 fs. At longer times, on the picosecond time scale, the hydrogen-transferred form decays with a threshold of 15.5 kJ/mol; this decay behavior was observed up to a total vibrational energy of approximately 7200 cm-1. The observed dynamics provide the global nature of the motion, which takes into account bonding before and after the motion, and the evolution of the wave packet from the initial nonequilibrium state to the transferred form along the O-H-O reaction coordinate. The vibrational periods (2pi/omega) of the relevant modes range from 13 fs (the OH stretch) to 190 fs (the low-frequency distortion) and the motion involves (in part) these coordinates. The intramolecular vibrational-energy redistribution dynamics at longer times are important to the hydrogen-bond dissociation and to the nonradiative decay of the hydrogen-transferred form
Universal Quantum Computation in a Neutral Atom Decoherence Free Subspace
In this paper, we propose a way to achieve protected universal computation in
a neutral atom quantum computer subject to collective dephasing. Our proposal
relies on the existence of a Decoherence Free Subspace (DFS), resulting from
symmetry properties of the errors. After briefly describing the physical system
and the error model considered, we show how to encode information into the DFS
and build a complete set of safe universal gates. Finally, we provide numerical
simulations for the fidelity of the different gates in the presence of
time-dependent phase errors and discuss their performance and practical
feasibility.Comment: 7 pages, 8 figure
Adiabatic Elimination in a Lambda System
This paper deals with different ways to extract the effective two-dimensional
lower level dynamics of a lambda system excited by off-resonant laser beams. We
present a commonly used procedure for elimination of the upper level, and we
show that it may lead to ambiguous results. To overcome this problem and better
understand the applicability conditions of this scheme, we review two rigorous
methods which allow us both to derive an unambiguous effective two-level
Hamiltonian of the system and to quantify the accuracy of the approximation
achieved: the first one relies on the exact solution of the Schrodinger
equation, while the second one resorts to the Green's function formalism and
the Feshbach projection operator technique.Comment: 14 pages, 3 figure
Error correction in ensemble registers for quantum repeaters and quantum computers
We propose to use a collective excitation blockade mechanism to identify
errors that occur due to disturbances of single atoms in ensemble quantum
registers where qubits are stored in the collective population of different
internal atomic states. A simple error correction procedure and a simple
decoherence-free encoding of ensemble qubits in the hyperfine states of alkali
atoms are presented.Comment: 4 pages, 2 figure
Tur\'an Graphs, Stability Number, and Fibonacci Index
The Fibonacci index of a graph is the number of its stable sets. This
parameter is widely studied and has applications in chemical graph theory. In
this paper, we establish tight upper bounds for the Fibonacci index in terms of
the stability number and the order of general graphs and connected graphs.
Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an
graphs and a connected variant of them are also extremal for these particular
problems.Comment: 11 pages, 3 figure
ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03
The far-infrared emission from rich galaxy clusters is investigated. Maps
have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C
camera. Ground based imaging and spectroscopy were also acquired. Here we
present the results for the cooling flow cluster Sersic 159-03. An infrared
source coincident with the dominant cD galaxy is found. Some off-center sources
are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy
and Astrophysics
Resveratrol given intraperitoneally does not inhibit the growth of high-risk t(4;11) acute lymphoblastic leukemia cells in a NOD/SCID mouse model.
The efficacy of resveratrol as a preventive agent against the growth of t(4;11) acute lymphoblastic leukemia (ALL) was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) ALL SEM cell line. SEM cells were injected into the tail vein and engraftment was monitored by flow cytometry. Once engraftment was observed, mice were injected intraperitoneally with resveratrol (10 mg/kg body weight) dissolved in dimethylsulfoxide (DMSO) or DMSO alone (control) every other day, or vincristine (0.5 mg/kg body weight) 3 times per week for 4 weeks (n=16 per group). Comparisons of the percent of human leukemia cells in blood and survival curves showed resveratrol did not inhibit progression of the disease. Liquid chromatography-tandem mass spectrometry analyses of mouse sera showed resveratrol was rapidly metabolized to glucuronidated and sulfated forms 1 h post-injection, with low to no resveratrol or metabolites observed in sera by 24-48 h. These data indicate that in contrast to findings in in vitro models, parenterally administered resveratrol does not have potential as a preventive agent against high risk t(4;11) ALL
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals
is theoretically studied. Using a scattering-matrix approach and the
Wigner-Smith delay time concept, we show that optical absorbance benefits both
from slow-light phenomena as well as a high filling factor of the energy
residing in the liquid. Utilizing strongly dispersive photonic crystal
structures, we numerically demonstrate how liquid-infiltrated photonic crystals
facilitate enhanced light-matter interactions, by potentially up to an order of
magnitude. The proposed concept provides strong opportunities for improving
existing miniaturized absorbance cells for optical detection in lab-on-a-chip
systems.Comment: Paper accepted for the "Special Issue OWTNM 2007" edited by A.
Lavrinenko and P. J. Robert
- âŠ