6,641 research outputs found

    Spin freezing and dynamics in Ca_{3}Co_{2-x}Mn_{x}O_{6} (x ~ 0.95) investigated with implanted muons: disorder in the anisotropic next-nearest neighbor Ising model

    Full text link
    We present a muon-spin relaxation investigation of the Ising chain magnet Ca_{3}Co_{2-x}Mn_{x}O_{6} (x~0.95). We find dynamic spin fluctuations persisting down to the lowest measured temperature of 1.6 K. The previously observed transition at around T ~18 K is interpreted as a subtle change in dynamics for a minority of the spins coupling to the muon that we interpret as spins locking into clusters. The dynamics of this fraction of spins freeze below a temperature T_{SF}~8 K, while a majority of spins continue to fluctuate. An explanation of the low temperature behavior is suggested in terms of the predictions of the anisotropic next-nearest-neighbor Ising model.Comment: 4 pages, 2 figure

    Muon-spin relaxation and heat capacity measurements on the magnetoelectric and multiferroic pyroxenes LiFeSi2O6 and NaFeSi2O6

    Full text link
    The results of muon-spin relaxation and heat capacity measurements on two pyroxene compounds LiFeSi2O6 and NaFeSi2O6 demonstrate that despite their underlying structural similarity the magnetic ordering is considerably different. In LiFeSi2O6 a single muon precession frequency is observed below TN, consistent with a single peak at TN in the heat capacity and a commensurate magnetic structure. In applied magnetic fields the heat capacity peak splits in two. In contrast, for natural NaFeSi2O6, where multiferroicity has been observed in zero-magnetic-field, a rapid Gaussian depolarization is observed showing that the magnetic structure is more complex. Synthetic NaFeSi2O6 shows a single muon precession frequency but with a far larger damping rate than in the lithium compound. Heat capacity measurements reproduce the phase diagrams previously derived from other techniques and demonstrate that the magnetic entropy is mostly associated with the build up of correlations in the quasi-one-dimensional Fe3+ chains

    Lagrangian Framework for Systems Composed of High-Loss and Lossless Components

    Full text link
    Using a Lagrangian mechanics approach, we construct a framework to study the dissipative properties of systems composed of two components one of which is highly lossy and the other is lossless. We have shown in our previous work that for such a composite system the modes split into two distinct classes, high-loss and low-loss, according to their dissipative behavior. A principal result of this paper is that for any such dissipative Lagrangian system, with losses accounted by a Rayleigh dissipative function, a rather universal phenomenon occurs, namely, selective overdamping: The high-loss modes are all overdamped, i.e., non-oscillatory, as are an equal number of low-loss modes, but the rest of the low-loss modes remain oscillatory each with an extremely high quality factor that actually increases as the loss of the lossy component increases. We prove this result using a new time dynamical characterization of overdamping in terms of a virial theorem for dissipative systems and the breaking of an equipartition of energy.Comment: 53 pages, 1 figure; Revision of our original manuscript to incorporate suggestions from refere

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    Full text link
    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV

    Determination of characteristic muon precession and relaxation signals in FeAs and FeAs2, possible impurity phases in pnictide superconductors

    Full text link
    We report muon-spin relaxation measurements of highly homogeneous samples of FeAs and FeAs2, both previously found as impurity phases in some samples of recently synthesized pnictide superconductors. We observe well defined muon precession in the FeAs sample with two precession frequencies of 38.2(3) and 22.7(9) MHz at 7.5 K, with the majority of the amplitude corresponding to the lower frequency component. In FeAs2 we confirm previous measurements showing that no long-ranged magnetic order occurs above 2 K and measure the muon spin relaxation rate, which increases on cooling. Our results exclude the possibility that previous muon-spin relaxation measurements of pnictide superconductors have been measuring the effect of these possible impurities.Comment: 4 pages, 3 figures, corrected Figure

    Spin systems with dimerized ground states

    Full text link
    In view of the numerous examples in the literature it is attempted to outline a theory of Heisenberg spin systems possessing dimerized ground states (``DGS systems") which comprises all known examples. Whereas classical DGS systems can be completely characterized, it was only possible to provide necessary or sufficient conditions for the quantum case. First, for all DGS systems the interaction between the dimers must be balanced in a certain sense. Moreover, one can identify four special classes of DGS systems: (i) Uniform pyramids, (ii) systems close to isolated dimer systems, (iii) classical DGS systems, and (iv), in the case of s=1/2s=1/2, systems of two dimers satisfying four inequalities. Geometrically, the set of all DGS systems may be visualized as a convex cone in the linear space of all exchange constants. Hence one can generate new examples of DGS systems by positive linear combinations of examples from the above four classes.Comment: With corrections of proposition 4 and other minor change

    Exploring the Age Gap: Nontraditional Age Students at Parkland

    Get PDF
    This podcast is the result of an ethnography assignment for Anthropology 103. Students interviewed three women who were attending or have attended Parkland College in Champaign, IL, as nontraditional aged students. The three were interviewed, and their answers led the students to conclude that nontraditional aged students attend for diverse reasons and therefore not to be placed in a single category

    Modeling Excitable Systems: Reentrant Tachycardia

    Full text link
    Excitable membranes are an important type of nonlinear dynamical system and their study can be used to provide a connection between physical and biological circuits. We discuss two models of excitable membranes important in cardiac and neural tissues. One model is based on the Fitzhugh-Nagumo equations and the other is based on a three-transistor excitable circuit. We construct a circuit that simulates reentrant tachycardia and its treatment by surgical ablation. This project is appropriate for advanced undergraduates as a laboratory capstone project, or as a senior thesis or honors project, and can also be a collaborative project, with one student responsible for the computational predictions and another for the circuit construction and measurements.Comment: 9 pages, twocolumn, revised and published in American Journal of Physic
    corecore