8 research outputs found

    Cloning, expression and functional characterization of the full-length murine ADAMTS13

    Full text link
    Functional deficiency or absence of the human von Willebrand factor (VWF)-cleaving protease (VWF-cp), recently termed ADAMTS13, has been shown to cause acquired and congenital thrombotic thrombocytopenic purpura (TTP), respectively. As a first step towards developing a small animal model of TTP, we have cloned the complete (non-truncated) murine Adamts13 gene from BALB/c mice liver poly A + mRNA. Murine ADAMTS13 is a 1426-amino-acid protein with a high homology and similar structural organization to the human ortholog. Transient expression of the murine Adamts13 cDNA in HEK 293 cells yielded a protein with a molecular weight of approximately 180 kDa which degraded recombinant murine VWF (rVWF) in a dose-dependent manner. The cleavage products of murine rVWF had the expected size of 140 and 170 kDa. Murine ADAMTS13 was inhibited by EDTA and the plasma from a TTP patient.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73592/1/j.1538-7836.2005.01246.x.pd

    Flexible Electrode for Implantable Neural Devices

    No full text
    The function of neural electrodes is to interface with the neural system for both sensory and actuation purposes. One of the major challenges in neural devices is to achieve a precise and reliable neuron–electrode interface (NEI). Advances in microfabrication technologies create the possibility to increase the number and reduce the size of electrode sites which can improve the spatial resolution of the NEI. Alternatively, replacing the substrate material of the microfabricated neural electrode from the rigid silicon to the flexible polymer can minimize the stiffness mismatch between electrodes and neural tissue, thus potentially improving the reliability of NEI. In this chapter, we provide an overview of the recent development in microfabricated polymeric neural electrodes. At first, we give a summary of material properties and fabrication processes for some polymers commonly used in the neural electrode application. Then, we review various designs of polymeric neural electrodes in the context of their specific applications. Finally, challenges and corresponding strategies in the development and practicability of polymeric neural electrodes are discussed. © Springer Science+Business Media New York 2014.1
    corecore