943 research outputs found

    Resolving Vega and the inclination controversy with CHARA/MIRC

    Full text link
    Optical and infrared interferometers definitively established that the photometric standard Vega (alpha Lyrae) is a rapidly rotating star viewed nearly pole-on. Recent independent spectroscopic analyses could not reconcile the inferred inclination angle with the observed line profiles, preferring a larger inclination. In order to resolve this controversy, we observed Vega using the six-beam Michigan Infrared Combiner on the Center for High Angular Resolution Astronomy Array. With our greater angular resolution and dense (u,v)-coverage, we find Vega is rotating less rapidly and with a smaller gravity darkening coefficient than previous interferometric results. Our models are compatible with low photospheric macroturbulence and also consistent with the possible rotational period of ~0.71 days recently reported based on magnetic field observations. Our updated evolutionary analysis explicitly incorporates rapid rotation, finding Vega to have a mass of 2.15+0.10_-0.15 Msun and an age 700-75+150 Myrs, substantially older than previous estimates with errors dominated by lingering metallicity uncertainties (Z=0.006+0.003-0.002).Comment: Accepted for publication in ApJ Letter

    Using high-resolution climate change information in water management: a decision makers’ perspective

    Get PDF
    The UK Climate Change Act requires the Environment Agency to report the risks it faces from climate change and actions taken to address these. Derived information from projections is critical to understanding likely impacts in water management. In 2019, the UK published an ensemble of high-resolution model simulations. The UKCP Local (2.2 km) projections can resolve smaller scale physical processes that determine rainfall and other variables at subdaily time-scales with the potential to provide new insights into extreme events, storm runoff and drainage management. However, simulations also need to inform adaptation. The challenge ahead is to identify and provide derived products without the need for further analysis by decision-makers. These include a wider evaluation of uncertainty, narratives about rainfall change across the projections and bias-corrected datasets. Future flood maps, peak rainfall estimates, uplift factors and future design storm profiles also need detailed guidance to support their use. Central government support is justified in the provision of up-to-date impacts information to inform flood risk management, given the large risks and exposure of all sectors. The further development of projections would benefit from greater focus and earlier scoping with industry representatives, operational tool developers and end users. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’

    High-precision calculations of dispersion coefficients, static dipole polarizabilities, and atom-wall interaction constants for alkali-metal atoms

    Full text link
    The van der Waals coefficients for the alkali-metal atoms from Na to Fr interacting in their ground states, are calculated using relativistic ab initio methods. The accuracy of the calculations is estimated by also evaluating atomic static electric dipole polarizabilities and coefficients for the interaction of the atoms with a perfectly conducting wall. The results are in excellent agreement with the latest data from ultra-cold collisions and from studies of magnetic field induced Feshbach resonances in Na and Rb. For Cs we provide critically needed data for ultra-cold collision studies

    Exclusive Measurements of pp -> dpi+pi0: Double-Pionic Fusion without ABC Effect

    Get PDF
    Exclusive measurements of the reaction pp -> dpi+pi0 have been carried out at T_p = 1.1 GeV at the CELSIUS storage ring using the WASA detector. The isovector pi+pi0 channel exhibits no enhancement at low invariant pipi masses, i. e. no ABC effect. The differential distributions are in agreement with the conventional t-channel Delta-Delta excitation process, which also accounts for the observed energy dependence of the total cross section. This is an update of a previously published version -- see important note at the end of the article

    Retarded long-range potentials for the alkali-metal atoms and a perfectly conducting wall

    Get PDF
    The retarded long-range potentials for hydrogen and alkali-metal atoms in their ground states and a perfectly conducting wall are calculated. The potentials are given over a wide range of atom-wall distances and the validity of the approximations used is established.Comment: RevTeX, epsf, 11 pages, 2 fig

    Natural Compatibilism, Indeterminism, and Intrusive Metaphysics

    Get PDF
    The claim that common sense regards free will and moral responsibility as compatible with determinism has played a central role in both analytic and experimental philosophy. In this paper, we show that evidence in favor of this “natural compatibilism” is undermined by the role that indeterministic metaphysical views play in how people construe deterministic scenarios. To demonstrate this, we re-examine two classic studies that have been used to support natural compatibilism. We find that although people give apparently compatibilist responses, this is largely explained by the fact that people import an indeterministic metaphysics into deterministic scenarios when making judgments about freedom and responsibility. We conclude that judgments based on these scenarios are not reliable evidence for natural compatibilism

    Slowing and cooling molecules and neutral atoms by time-varying electric field gradients

    Get PDF
    A method of slowing, accelerating, cooling, and bunching molecules and neutral atoms using time-varying electric field gradients is demonstrated with cesium atoms in a fountain. The effects are measured and found to be in agreement with calculation. Time-varying electric field gradient slowing and cooling is applicable to atoms that have large dipole polarizabilities, including atoms that are not amenable to laser slowing and cooling, to Rydberg atoms, and to molecules, especially polar molecules with large electric dipole moments. The possible applications of this method include slowing and cooling thermal beams of atoms and molecules, launching cold atoms from a trap into a fountain, and measuring atomic dipole polarizabilities.Comment: 13 pages, 10 figures. Scheduled for publication in Nov. 1 Phys. Rev.
    corecore