361 research outputs found

    Full two-electron calculations of antiproton collisions with molecular hydrogen

    Full text link
    Total cross sections for single ionization and excitation of molecular hydrogen by antiproton impact are presented over a wide range of impact energy from 1 keV to 6.5 MeV. A nonpertubative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the electrons. Good agreement is obtained between the present calculations and experimental measurements of single-ionization cross sections at high energies, whereas some discrepancies with the experiment are found around the maximum. The importance of the molecular geometry and a full two-electron description is demonstrated. The present findings provide benchmark results which might be useful for the development of molecular models.Comment: 4 pages, 3 figure

    Collisions of antiprotons with hydrogen molecular ions

    Full text link
    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact-energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter method are applied in order to describe the target molecule and the collision process. It is shown that three perpendicular orientations of the molecular axis with respect to the trajectory are sufficient to accurately reproduce the ionization cross section calculated by [Sakimoto, Phys. Rev. A 71, 062704 (2005)] reducing the numerical effort drastically. The independent-event model is employed to approximate the cross section for double ionization and H+ production in antiproton collisions with H2.Comment: 12 pages, 5 figures, 4 table

    CUTLASS/IMAGE observations of high-latitude convection features during substorms

    Get PDF

    Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground

    Get PDF
    Based on magnetic field measurements from the satellite CHAMP, a detailed picture could be obtained of the upstream wave (UW) distribution in the topside ionosphere. The low, near-polar orbit of CHAMP, covering all local times, allows the global distribution of this type of pulsation to be revealed. The observations from space are compared to recordings of the ground-based MM100 meridional array covering the latitude range 66° to 42° in magnetic coordinates. UWs show up very clearly in the compressional component of the satellite magnetic field data, whereas on the ground, their signature is found in the H component, but it is mixed with oscillations from field line resonant pulsations. Here we first introduce a procedure for an automated detection of UW signatures, both in ground and space data. Then a statistical analysis is presented of UW pulsations recorded during a 132-day period, centred on the autumn 2001 equinox. Observations in the top-side ionosphere reveal a clear latitudinal distribution of the amplitudes. Largest signals are observed at the equator. Minima show up at about 40° latitude. The coherence between ground and satellite wave signatures is high over wide latitude and longitude ranges. We make suggestions about the entry mechanism of UWs from the foreshock region into the magnetosphere. The clear UW signature in satellite recordings between −60° and 60° latitude allows for detailed investigations of the dependence on solar wind conditions. We test the control of solar wind speed, interplanetary magnetic field strength and cone angle on UWs. For the first time, it is possible to derive details of the Doppler-shift effect by modifying the UW frequency from direct observations. The results reconcile foreshock wave generation predictions with near-Earth observations
    • …
    corecore