1,628 research outputs found
Helicity fractions of W bosons from top quark decays at NNLO in QCD
Decay rates of unpolarized top quarks into longitudinally and transversally
polarized W bosons are calculated to second order in the strong coupling
constant alpha_s. Including the finite bottom quark mass and electroweak
effects, the Standard Model predictions for the W boson helicity fractions are
F_L=0.687(5), F_+=0.0017(1), and F_-=0.311(5).Comment: 5 pages, 1 figur
Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010
The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together
the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in
the coming decade and beyond.<p></p>
The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p>
Nuclear Physics projects are often âbig scienceâ, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europeâs leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p>
The current NuPECC Long Range Plan 2010 âPerspectives of Nuclear Physics in Europeâ resulted from consultation
with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations
are presented on the following pages. For the interested public, a short summary brochure has been produced to
accompany the Forward Look.<p></p>
Large Universality of The Baryon Isgur--Wise Form Factor: The Group Theoretical Approach
In a previous article, it has been proved under the framework of chiral
soliton model that the same Isgur--Wise form factor describes the semileptonic
and decays in the
large limit. It is shown here that this result is in fact independent of
the chiral soliton model and is solely the consequence of the spin-flavor SU(4)
symmetry which arises in the baryon sector in the large limit.Comment: 10 pages in REVTeX, no figure
Recommended from our members
Overcoming the slowing down of flat-histogram Monte Carlo simulations: Cluster updates and optimized broad-histogram ensembles
We study the performance of Monte Carlo simulations that sample a broad histogram in energy by determining the mean first-passage time to span the entire energy space of d-dimensional ferromagnetic Ising/Potts models. We first show that flat-histogram Monte Carlo methods with single-spin flip updates such as the Wang-Landau algorithm or the multicanonical method perform suboptimally in comparison to an unbiased Markovian random walk in energy space. For the d=1, 2, 3 Ising model, the mean first-passage time Ï scales with the number of spins N=Ld as ÏâN2Lz. The exponent z is found to decrease as the dimensionality d is increased. In the mean-field limit of infinite dimensions we find that z vanishes up to logarithmic corrections. We then demonstrate how the slowdown characterized by z\u3e0 for finite d can be overcome by two complementary approachesâcluster dynamics in connection with Wang-Landau sampling and the recently developed ensemble optimization technique. Both approaches are found to improve the random walk in energy space so that ÏâN2 up to logarithmic corrections for the d=1, 2 Ising model
Radiative Decay of Vector Quarkonium: Constraints on Glueballs and Light Gluinos
Given a resonance of known mass, width, and J^{PC}, we can determine its
gluonic branching fraction, b(R->gg), from data on its production in radiative
vector quarkonium decay, V -> gamma+R. For most resonances b(R->gg) is found to
be O(10%), consistent with being q-qbar states, but we find that both
pseudoscalars observed in the 1440 MeV region have b(R->gg) ~ 1/2 - 1, and
b(f_0^{++}->gg) ~ 1/2. As data improves, b(R->gg) should be a useful
discriminator between q-qbar and gluonic states and may permit quantitative
determination of the extent to which a particular resonance is a mixture of
glueball and q-qbar. We also examine the regime of validity of pQCD for
predicting the rate of V -> gamma+eta_gluino, the ``extra'' pseudoscalar bound
state which would exist if there were light gluinos. From the CUSB limit on
peaks in Upsilon -> gamma X, the mass range 3 GeV < m(eta_gluino) < 7 GeV can
be excluded. An experiment must be significantly more sensitive to exclude an
eta_gluino lighter than this.Comment: 36pp (inc figs),RU-94-04. (Replaces original which didn't latex
correctly and didn't have figures.
Contrasting heterozygosity-fitness correlations across life in a long-lived seabird
Selection is a central force underlying evolutionary change and can vary in strength and direction, for example across time and space. The fitness consequences of individual genetic diversity have often been investigated by testing for multilocus heterozygosity-fitness correlations (HFCs), but few studies have been able to assess HFCs across life stages and in both sexes. Here, we test for HFCs using a 26-year longitudinal individual-based data set from a large population of a long-lived seabird (the common tern, Sterna hirundo), where 7,974 chicks and breeders of known age were genotyped at 15 microsatellite loci and sampled for life-history traits over the complete life cycle. Heterozygosity was not correlated with fledging or post-fledging prospecting probabilities, but was positively correlated with recruitment probability. For breeders, annual survival was not correlated with heterozygosity, but annual fledgling production was negatively correlated with heterozygosity in males and highest in intermediately heterozygous females. The contrasting HFCs among life stages and sexes indicate differential selective processes and emphasize the importance of assessing fitness consequences of traits over complete life histories
Heavy quark supermultiplet excitations
Lorentz covariant wave functions for meson and baryon supermultiplets are
simply derived by boosting representations corresponding to
multiquark systems at rest.Comment: 12 pages (Revtex), UTAS-PHYS-93-4
- âŠ