42 research outputs found

    Friction Drag on a Particle Moving in a Nematic Liquid Crystal

    Full text link
    The flow of a liquid crystal around a particle does not only depend on its shape and the viscosity coefficients but also on the direction of the molecules. We studied the resulting drag force on a sphere moving in a nematic liquid crystal (MBBA) in a low Reynold's number approach for a fixed director field (low Ericksen number regime) using the computational artificial compressibility method. Taking the necessary disclination loop around the sphere into account, the value of the drag force anisotropy (F_\perp/F_\parallel=1.50) for an exactly computed field is in good agreement with experiments (~1.5) done by conductivity diffusion measurements. We also present data for weak anchoring of the molecules on the particle surface and of trial fields, which show to be sufficiently good for most applications. Furthermore, the behaviour of the friction close to the transition point nematic isotropic and for a rod-like and a disc-like liquid crystal will be given.Comment: 23 pages RevTeX, including 3 PS figures, 1 PS table and 1 PS-LaTeX figure; Accepted for publication in Phys. Rev.

    Lehmann rotation of cholesteric droplets subjected to a temperature gradient: role of the concentration of chiral molecules

    Get PDF
    International audienceWe present a systematic study of the Lehmann rotation of cholesteric droplets subjected to a temperature gradient when the concentration of chiral molecules is changed. The liquid crystal chosen is an eutectic mixture of 8CB and 8OCB doped with a small amount of the chiral molecule R811. The angular velocity of the droplets strongly depend on their size and on the concentration of chiral molecules. The Lehmann coefficient is estimated by using three different methods. Our results are consistent with a Lehmann coefficient proportional to the concentration of chiral molecules. We additionally show the existence of a critical size of the droplets below which they change texture and stop rotating

    Electroconvection in a Suspended Fluid Film: A Linear Stability Analysis

    Full text link
    A suspended fluid film with two free surfaces convects when a sufficiently large voltage is applied across it. We present a linear stability analysis for this system. The forces driving convection are due to the interaction of the applied electric field with space charge which develops near the free surfaces. Our analysis is similar to that for the two-dimensional B\'enard problem, but with important differences due to coupling between the charge distribution and the field. We find the neutral stability boundary of a dimensionless control parameter R{\cal R} as a function of the dimensionless wave number Îş{\kappa}. R{\cal R}, which is proportional to the square of the applied voltage, is analogous to the Rayleigh number. The critical values Rc{{\cal R}_c} and Îşc{\kappa_c} are found from the minimum of the stability boundary, and its curvature at the minimum gives the correlation length Îľ0{\xi_0}. The characteristic time scale Ď„0{\tau_0}, which depends on a second dimensionless parameter P{\cal P}, analogous to the Prandtl number, is determined from the linear growth rate near onset. Îľ0{\xi_0} and Ď„0{\tau_0} are coefficients in the Ginzburg-Landau amplitude equation which describes the flow pattern near onset in this system. We compare our results to recent experiments.Comment: 36 pages, 7 included eps figures, submitted to Phys Rev E. For more info, see http://mobydick.physics.utoronto.ca

    Kleinregion Warburger Raum

    No full text

    Aircraft and Space Technology

    No full text
    corecore