2,460 research outputs found
The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture
The eel has long been esteemed as an important food fish in the world, especially in Japan, and has been used as an experimental fish for many fields of fish physiology. However, the decreases in eel resources have been a serious concern in recent years. The catches of glass eels as seedlings for aquaculture have shown a long-term decrease in both Europe and East Asia. To increase eel resources, the development of techniques for artificial induction of maturation and spawning and rearing their larvae have been eagerly desired. Recent progress of reproductive physiology of fish, especially mechanisms of oocyte maturation and ovulation in female and of spermatozoa maturation in male, facilitate to establish techniques for hormonal induction of maturation and spawning in sexually immature eels. With persistent effort to development of rearing techniques of larvae, we have first succeeded to produce glass eel. These applied techniques are may contribute to understand the basic reproductive physiology of the eel
Field-induced staggered magnetic moment in the quasi-two-dimensional organic Mott insulator -(BEDT-TTF)Cu[N(CN)]Cl
We investigated the magnetism under a magnetic field in the
quasi-two-dimensional organic Mott insulator
-(BEDT-TTF)Cu[N(CN)]Cl through magnetization and
C-NMR measurements. We found that in the nominally paramagnetic phase
(i.e., above N\'eel temperature) the field-induced local moments have a
staggered component perpendicular to the applied field. As a result, the
antiferromagnetic transition well defined at a zero field becomes crossover
under a finite field. This unconventional behavior is qualitatively reproduced
by the molecular-field calculation for Hamiltonian including the exchange,
Dzyaloshinsky-Moriya (DM), and Zeeman interactions. This calculation also
explains other unconventional magnetic features in
-(BEDT-TTF)Cu[N(CN)]Cl reported in the literature. The
present results highlight the importance of the DM interaction in field-induced
magnetism in a nominally paramagnetic phase, especially in low-dimensional spin
systems.Comment: 11 pages, 12 figures, selected for Editors' Suggestion
On the basic mechanism of Pixelized Photon Detectors
A Pixelized Photon Detector (PPD) is a generic name for the semiconductor
devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and
Multi-Pixel Photon Counter, which has high photon counting capability. While
the internal mechanisms of the PPD have been intensively studied in recent
years, the existing models do not include the avalanche process. We have
simulated the multiplication and quenching of the avalanche process and have
succeeded in reproducing the output waveform of the PPD. Furthermore our model
predicts the existence of dead-time in the PPD which has never been numerically
predicted. For serching the dead-time, we also have developed waveform analysis
method using deconvolution which has the potential to distinguish neibouring
pulses precisely. In this paper, we discuss our improved model and waveform
analysis method.Comment: 4pages, 5figures, To appear in the proceedings of 5th International
Conference on New Developments in Photodetection (NDIP08), Aix-les-Bains,
France, 15-20 Jun 200
Pressure effects on the superconducting properties of YBa_2Cu_4O_8
Measurements of the magnetization under high hydrostatic pressure (up to 10.2
kbar) in YBa_2Cu_4O_8 were carried out. From the scaling analysis of the
magnetization data the pressure induced shifts of the transition temperature
T_c, the volume V and the anisotropy \gamma have been obtained. It was shown
that the pressure induced relative shift of T_c mirrors essentially that of the
anisotropy. This observation uncovers a novel generic property of anisotropic
type II superconductors, that inexistent in the isotropic case.Comment: 4 pages, 3 figure
Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO
We report the dielectric dispersion of the giant magnetocapacitance (GMC) in
multiferroic DyMnO over a wide frequency range. The GMC is found to be
attributable not to the softened electromagnon but to the electric-field-driven
motion of multiferroic domain wall (DW). In contrast to conventional
ferroelectric DWs, the present multiferroic DW motion holds extremely high
relaxation rate of s even at low temperatures. This
mobile nature as well as the model simulation suggests that the multiferroic DW
is not atomically thin as in ferroelectrics but thick, reflecting its magnetic
origin.Comment: 4 pages, 4 figure
Energetic perspective on emergent inductance exhibited by magnetic textures in the pinned regime
Spatially varying magnetic textures can exhibit electric-current-induced
dynamics as a result of the spin-transfer torque effect. When such a magnetic
system is electrically driven, an electric field is generated, which is called
the emergent electric field. In particular, when magnetic-texture dynamics are
induced under the application of an AC electric current, the emergent electric
field also appears in an AC manner, notably, with an out-of-phase time profile,
thus exhibiting inductor behaviour, often called an emergent inductor. Here we
show that the emergent inductance exhibited by magnetic textures in the pinned
regime can be explained in terms of the current-induced energy stored in the
magnetic system. We numerically find that the inductance values defined from
the emergent electric field and the current-induced magnetization-distortion
energy, respectively, are in quantitative agreement in the so-called adiabatic
limit. Our findings indicate that emergent inductors retain the basic concept
of conventional inductors; that is, the energy is stored under the application
of electric current
- …