618 research outputs found

    Systematic X-ray absorption study of hole doping in BSCCO - phases

    Full text link
    X-ray absorption spectroscopy (XAS) on the O 1s threshold was applied to Bi-based, single crystalline high temperature superconductors (HTc's), whose hole densities in the CuO2 planes was varied by different methods. XAS gives the intensity of the so-called pre-peak of the O 1s line due to the unoccupied part of the Zhang-Rice (ZR) singlet state. The effects of variation of the number n of CuO2 - planes per unit cell (n = 1,2,3) and the effect of La-substitution for Sr for the n = 1 and n = 2 phase were studied systematically. Furthermore the symmetry of the states could be probed by the polarization of the impinging radiation.Comment: 4 pages, 2 figures, to appear in the proceedings of SCES2001, Ann Arbor, August 6-10, 200

    Quasiparticles and Energy Scaling in Bi2_2Sr2_2Can−1_{n-1}Cun_nO2n+4_{2n+4} (n\it{n}=1-3): Angle-Resolved Photoemission Spectroscopy

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) has been performed on the single- to triple-layered Bi-family high-{\it Tc_c} superconductors (Bi2_2Sr2_2Can−1_{n-1}Cun_nO2n+4_{2n+4}, n\it{n}=1-3). We found a sharp quasiparticle peak as well as a pseudogap at the Fermi level in the triple-layered compound. Comparison among three compounds has revealed a universal rule that the characteristic energies of superconducting and pseudogap behaviors are scaled with the maximum {\it Tc_c}.Comment: 4 pages, 4 figure

    Unusual electronic ground state of a prototype cuprate: band splitting of single CuO_2-plane Bi_2 Sr_(2-x) La_x CuO_(6+delta)

    Full text link
    By in-situ change of polarization a small splitting of the Zhang-Rice singlet state band near the Fermi level has been resolved for optimum doped (x=0.4) Bi2_{2}Sr2−x_{2-x}Lax_{x}CuO6+δ_{6+\delta} at the (pi,0)-point (R.Manzke et al. PRB 63, R100504 (2001). Here we treat the momentum dependence and lineshape of the split band by photoemission in the EDC-mode with very high angular and energy resolution. The splitting into two destinct emissions could also be observed over a large portion of the major symmetry line Γ\GammaM, giving the dispersion for the individual contributions. Since bi-layer effects can not be present in this single-layer material the results have to be discussed in the context of one-particle removal spectral functions derived from current theoretical models. The most prominent are microscopic phase separation including striped phase formation, coexisting antiferromagnetic and incommensurate charge-density-wave critical fluctuations coupled to electrons (hot spots) or even spin charge separation within the Luttinger liquid picture, all leading to non-Fermi liquid like behavior in the normal state and having severe consequences on the way the superconducting state forms. Especially the possibilty of observing spinon and holon excitations is discussed.Comment: 5 pages, 4 figure

    Coupling to a phononic mode in Bi2−xPbxSr2CaCu2O8+δBi_{2-x}Pb_xSr_2CaCu_2O_{8+\delta}: Angle-resolved photoemission

    Full text link
    The kink in the dispersion and the drop in the width observed by angle-resolved photoemission in the nodal direction of the Brillouin zone of Bi2−xPbxSr2CaCu2O8+δ\mathrm{Bi_{2-x}Pb_xSr_2CaCu_2O_{8+ \delta}} (abbreviated as (Pb)Bi2212) has attracted broad interest [1-3]. Surprisingly optimally lead-doped (Pb)Bi2212 with TC>89K\mathrm{T_C>89K} as well as the shadow band were not investigated so far, although the origin of the kink and the drop is still under strong debate. In this context a resonant magnetic-mode scenario and an electron-phonon coupling scenario are discussed controversially. Here we analyze the relevant differences between both scenarios and conclude that the kink and the drop are caused by a coupling of the electronic system to a phononic mode at least in the nodal direction. It is found that besides the dispersion and the drop in the width also the peak height as a new criterion can be used to define the energy scale of the interaction, giving a new means for a precise and consistent determination of the kink energy

    Strong spin triplet contribution of the first removal state in the insulating regime of Bi2Sr2Ca1-xYxCu2O8+delta

    Full text link
    The experimental dispersion of the first removal state in the insulating regime of Bi2Sr2Ca1-xYxCu2O8+delta is found to differ significantly from that of other parent materials: oxyclorides and La2CuO4 . For Y-contents of 0.92 > x > 0.55 due to nonstoichiometric effects in the Bi-O layers, the hole concentration in the CuO2 -layers is almost constant and on the contrary the crystal lattice parameters a,b,c change very strongly. This (a,b) parameter increase and c parameter decrease results in an unconventional three peak structure at (0,0);(pi/2, pi/2);(pi,pi) for x=0.92. We can describe the experimental data only beyond the framework of the 3-band pd-model involving the representations of a new triplet counterpart for the Zhang-Rice singlet state.Comment: 16 pages, 4 figure

    Formal Framework for Property-driven Obfuscations

    Get PDF
    We study the existence and the characterization of function transformers that minimally or maximally modify a function in order to reveal or conceal a certain property. Based on this general formal framework we develop a strategy for the design of the maximal obfuscating transformation that conceals a given property while revealing the desired observational behaviou
    • …
    corecore