642 research outputs found
Brane-world Cosmologies with non-local bulk effects
It is very common to ignore the non-local bulk effects in the study of
brane-world cosmologies using the brane-world approach. However, we shall
illustrate through the use of three different scenarios, that the non-local
bulk-effect does indeed have significant impact on both the
initial and future behaviour of brane-world cosmologies.Comment: 17 pages, no figures, iopart.cls, submitted to CQ
Scalar Field Cosmologies with Barotropic Matter: Models of Bianchi class B
We investigate in detail the qualitative behaviour of the class of Bianchi
type B spatially homogeneous cosmological models in which the matter content is
composed of two non-interacting components; the first component is described by
a barotropic fluid having a gamma-law equation of state, whilst the second is a
non-interacting scalar field (phi) with an exponential potential V=Lambda exp(k
phi). In particular, we study the asymptotic properties of the models both at
early and late times, paying particular attention on whether the models
isotropize (and inflate) to the future, and we discuss the genericity of the
cosmological scaling solutions.Comment: 18 pages, 1 figure, uses revtex and epsf to insert figur
The Dynamics of Multi-Scalar Field Cosmological Models and Assisted Inflation
We investigate the dynamical properties of a class of spatially homogeneous
and isotropic cosmological models containing a barotropic perfect fluid and
multiple scalar fields with independent exponential potentials. We show that
the assisted inflationary scaling solution is the global late-time attractor
for the parameter values for which the model is inflationary, even when
curvature and barotropic matter are included. For all other parameter values
the multi-field curvature scaling solution is the global late-time attractor
(in these solutions asymptotically the curvature is not dynamically
negligible). Consequently, we find that in general all of the scalar fields in
multi-field models with exponential potentials are non-negligible in late-time
behaviour, contrary to what is commonly believed. The early-time and
intermediate behaviour of the models is also studied. In particular, n-scalar
field models are investigated and the structure of the saddle equilibrium
points corresponding to inflationary m-field scaling solutions and
non-inflationary m-field matter scaling solutions are also studied (where m<n),
leading to interesting transient dynamical behaviour with new physical
scenarios of potential importance.Comment: 27 pages, uses REVTeX Added an appendix illustrating some of the
details needed to compute the stability of the assisted inflationary solutio
Local and non-local measures of acceleration in cosmology
Current cosmological observations, when interpreted within the framework of a
homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) model,
strongly suggest that the Universe is entering a period of accelerating
expansion. This is often taken to mean that the expansion of space itself is
accelerating. In a general spacetime, however, this is not necessarily true. We
attempt to clarify this point by considering a handful of local and non-local
measures of acceleration in a variety of inhomogeneous cosmological models.
Each of the chosen measures corresponds to a theoretical or observational
procedure that has previously been used to study acceleration in cosmology, and
all measures reduce to the same quantity in the limit of exact spatial
homogeneity and isotropy. In statistically homogeneous and isotropic
spacetimes, we find that the acceleration inferred from observations of the
distance-redshift relation is closely related to the acceleration of the
spatially averaged universe, but does not necessarily bear any resemblance to
the average of the local acceleration of spacetime itself. For inhomogeneous
spacetimes that do not display statistical homogeneity and isotropy, however,
we find little correlation between acceleration inferred from observations and
the acceleration of the averaged spacetime. This shows that observations made
in an inhomogeneous universe can imply acceleration without the existence of
dark energy.Comment: 19 pages, 10 figures. Several references added or amended, some minor
clarifications made in the tex
Rheumatoid Arthritis Patients With Circulating Extracellular Vesicles Positive for IgM Rheumatoid Factor Have Higher Disease Activity
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that mainly affects synovial joints. Validated laboratory parameters for RA diagnosis are higher blood levels of rheumatoid factor IgM (IgM-RF), anti-citrullinated protein autoantibodies (ACPA), C-reactive protein (CRP) levels and erythrocyte sedimentation rate (ESR). Clinical parameters used are the number of tender (TJC) and swollen joints (SJC) and the global patient visual analog score (VAS). To determine disease remission in patients a disease activity score (DAS28) can be calculated based on SJC, TJC, VAS, and ESR (or alternatively CRP). However, subtle and better predictive changes to follow treatment responses in individual patients cannot be measured by the above mentioned parameters nor by measuring cytokine levels in blood. As extracellular vesicles (EVs) play a role in intercellular communication and carry a multitude of signals we set out to determine their value as a biomarker for disease activity. EVs were isolated from platelet-free plasma of 41 RA patients and 24 healthy controls (HC) by size exclusion chromatography (SEC). We quantified the particle and protein concentration, using NanoSight particle tracking analysis and micro-BCA, respectively, and observed no differences between RA patients and HC. In plasma of 28 out of 41 RA patients IgM-RF was detectable by ELISA, and in 13 out of these 28 seropositive RA patients (RF+RA) IgM-RF was also detected on their isolated pEVs (IgM-RF+). In seronegative RA patients (RF−RA) we did not find any RF present on pEVs. When comparing disease parameters we found no differences between RF+RA and RF−RA patients, except for increased ESR levels in RF+RA patients. However, RF+RA patients with IgM-RF+ pEVs showed significantly higher levels of CRP and ESR and also VAS and DAS28 were significantly increased compared to RA+ patients without IgM-RF+ pEVs. This study shows for the first time the presence of IgM-RF on pEVs in a proportion of RF+RA patients with a higher disease activity
Closed cosmologies with a perfect fluid and a scalar field
Closed, spatially homogeneous cosmological models with a perfect fluid and a
scalar field with exponential potential are investigated, using dynamical
systems methods. First, we consider the closed Friedmann-Robertson-Walker
models, discussing the global dynamics in detail. Next, we investigate
Kantowski-Sachs models, for which the future and past attractors are
determined. The global asymptotic behaviour of both the
Friedmann-Robertson-Walker and the Kantowski-Sachs models is that they either
expand from an initial singularity, reach a maximum expansion and thereafter
recollapse to a final singularity (for all values of the potential parameter
kappa), or else they expand forever towards a flat power-law inflationary
solution (when kappa^2<2). As an illustration of the intermediate dynamical
behaviour of the Kantowski-Sachs models, we examine the cases of no barotropic
fluid, and of a massless scalar field in detail. We also briefly discuss
Bianchi type IX models.Comment: 15 pages, 10 figure
Vascular architecture and hypoxic profiles in human head and neck squamous cell carcinomas
Tumour oxygenation and vasculature are determinants for radiation treatment outcome and prognosis in patients with squamous cell carcinomas of the head and neck. In this study we visualized and quantified these factors which may provide a predictive tool for new treatments. Twenty-one patients with stage III–IV squamous cell carcinomas of the head and neck were intravenously injected with pimonidazole, a bioreductive hypoxic marker. Tumour biopsies were taken 2 h later. Frozen tissue sections were stained for vessels and hypoxia by fluorescent immunohistochemistry. Twenty-two sections of biopsies of different head and neck sites were scanned and analysed with a computerized image analysis system. The hypoxic fractions varied from 0.02 to 0.29 and were independent from T- and N-classification, localization and differentiation grade. No significant correlation between hypoxic fraction and vascular density was observed. As a first attempt to categorize tumours based on their hypoxic profile, three different hypoxia patterns are described. The first category comprised tumours with large hypoxic, but viable, areas at distances even greater than 200 μm from the vessels. The second category showed a typical band-like distribution of hypoxia at an intermediate distance (50–200 μm) from the vessels with necrosis at greater distances. The third category demonstrated hypoxia already within 50 μm from the vessels, suggestive for acute hypoxia. This method of multiparameter analysis proved to be clinically feasible. The information on architectural patterns and the differences that exist between tumours can improve our understanding of the tumour micro-environment and may in the future be of assistance with the selection of (oxygenation modifying) treatment strategies. © 2000 Cancer Research Campaig
Isotropic singularity in inhomogeneous brane cosmological models
We discuss the asymptotic dynamical evolution of spatially inhomogeneous
brane-world cosmological models close to the initial singularity. By
introducing suitable scale-invariant dependent variables and a suitable gauge,
we write the evolution equations of the spatially inhomogeneous brane
cosmological models with one spatial degree of freedom as a system of
autonomous first-order partial differential equations. We study the system
numerically, and we find that there always exists an initial singularity, which
is characterized by the fact that spatial derivatives are dynamically
negligible. More importantly, from the numerical analysis we conclude that
there is an initial isotropic singularity in all of these spatially
inhomogeneous brane cosmologies for a range of parameter values which include
the physically important cases of radiation and a scalar field source. The
numerical results are supported by a qualitative dynamical analysis and a
calculation of the past asymptotic decay rates. Although the analysis is local
in nature, the numerics indicates that the singularity is isotropic for all
relevant initial conditions. Therefore this analysis, and a preliminary
investigation of general inhomogeneous () models, indicates that it is
plausible that the initial singularity is isotropic in spatially inhomogeneous
brane-world cosmological models and consequently that brane cosmology naturally
gives rise to a set of initial data that provide the conditions for inflation
to subsequently take place.Comment: 32 pages with 8 pictures. submitted to Class. Quant. Gra
- …