7,534 research outputs found

    Moving Five-Branes in Low-Energy Heterotic M-Theory

    Get PDF
    We construct cosmological solutions of four-dimensional effective heterotic M-theory with a moving five-brane and evolving dilaton and T modulus. It is shown that the five-brane generates a transition between two asymptotic rolling-radii solutions. Moreover, the five-brane motion always drives the solutions towards strong coupling asymptotically. We present an explicit example of a negative-time branch solution which ends in a brane collision accompanied by a small-instanton transition. The five-dimensional origin of some of our solutions is also discussed.Comment: 16 pages, Latex, 3 eps figure

    Cosmological Solutions of Horava-Witten Theory

    Get PDF
    We discuss simple cosmological solutions of Horava-Witten theory describing the strongly coupled heterotic string. At energies below the grand-unified scale, the effective theory is five- not four-dimensional, where the additional coordinate parameterizes a S^1/Z_2 orbifold. Furthermore, it admits no homogeneous solutions. Rather, the vacuum state, appropriate for a reduction to four-dimensional supersymmetric models, is a BPS domain wall. Relevant cosmological solutions are those associated with this BPS state. In particular, such solutions must be inhomogeneous, depending on the orbifold coordinate as well as on time. We present two examples of this new type of cosmological solution, obtained by separation of variables rather that by exchange of time and radius coordinate applied to a brane solution, as in previous work. The first example represents the analog of a rolling radii solution with the radii specifying the geometry of the domain wall. This is generalized in the second example to include a nontrivial ``Ramond-Ramond'' scalar.Comment: 21 pages, Latex 2e with amsmath, minor addition

    Heterotic M-Theory Cosmology in Four and Five Dimensions

    Get PDF
    We study rolling radii solutions in the context of the four- and five-dimensional effective actions of heterotic M-theory. For the standard four-dimensional solutions with varying dilaton and T-modulus, we find approximate five-dimensional counterparts. These are new, generically non-separating solutions corresponding to a pair of five-dimensional domain walls evolving in time. Loop corrections in the four-dimensional theory are described by certain excitations of fields in the fifth dimension. We point out that the two exact separable solutions previously discovered are precisely the special cases for which the loop corrections are time-independent. Generically, loop corrections vary with time. Moreover, for a subset of solutions they increase in time, evolving into complicated, non-separating solutions. In this paper we compute these solutions to leading, non-trivial order. Using the equations for the induced brane metric, we present a general argument showing that the accelerating backgrounds of this type cannot evolve smoothly into decelerating backgrounds.Comment: 15 pages, Latex, 1 eps figur

    Particles held by springs in a linear shear flow exhibit oscillatory motion

    Get PDF
    The dynamics of small spheres, which are held by linear springs in a low Reynolds number shear flow at neighboring locations is investigated. The flow elongates the beads and the interplay of the shear gradient with the nonlinear behavior of the hydrodynamic interaction among the spheres causes in a large range of parameters a bifurcation to a surprising oscillatory bead motion. The parameter ranges, wherein this bifurcation is either super- or subcritical, are determined.Comment: 4 pages, 5 figure

    Kink-boundary collisions in a two dimensional scalar field theory

    Get PDF
    In a two-dimensional toy model, motivated from five-dimensional heterotic M-theory, we study the collision of scalar field kinks with boundaries. By numerical simulation of the full two-dimensional theory, we find that the kink is always inelastically reflected with a model-independent fraction of its kinetic energy converted into radiation. We show that the reflection can be analytically understood as a fluctuation around the scalar field vacuum. This picture suggests the possibility of spontaneous emission of kinks from the boundary due to small perturbations in the bulk. We verify this picture numerically by showing that the radiation emitted from the collision of an initial single kink eventually leads to a bulk populated by many kinks. Consequently, processes changing the boundary charges are practically unavoidable in this system. We speculate that the system has a universal final state consisting of a stack of kinks, their number being determined by the initial energy

    Cosmological Perturbations in Brane-World Theories: Formalism

    Get PDF
    We develop a gauge-invariant formalism to describe metric perturbations in five-dimensional brane-world theories. In particular, this formalism applies to models originating from heterotic M-theory. We introduce a generalized longitudinal gauge for scalar perturbations. As an application, we discuss some aspects of the evolution of fluctuations on the brane. Moreover, we show how the five-dimensional formalism can be matched to the known four-dimensional one in the limit where an effective four-dimensional description is appropriate.Comment: 16 pages, no figure, matches version to appear in PR

    p-Brane cosmology and phases of Brans-Dicke theory with matter

    Get PDF
    We study the effect of the solitonic degrees of freedom in string cosmology following the line of Rama. The gas of solitonic p-brane is treated as a perfect fluid in a Brans-Dicke type theory. In this paper, we find exact cosmological solutions for any Brans-Dicke parameter ω\omega and for general parameter γ\gamma of equation of state and classify the cosmology of the solutions on a parameter space of γ\gamma and ω\omega.Comment: 26 pages, 5 figures, Contents and references added; published in Phys. Rev. D57(1998) 462

    Designing Cyclic Universe Models

    Full text link
    Recent advances in understanding the propagation of perturbations through the transition from big crunch to big bang (esp. Tolley et al. hep-th/0306109) make it possible for the first time to consider the full set of phenomenological constraints on the scalar field potential in cyclic models of the universe. We show that cyclic models require a comparable degree of tuning to that needed for inflationary models. The constraints are reduced to a set of simple design rules including "fast-roll" parameters analogous to the "slow-roll" parameters in inflation.Comment: 4 pages, 2 figures. Minor typos and figure correcte
    • …
    corecore