1,186 research outputs found
Create a translational medicine knowledge repository - Research downsizing, mergers and increased outsourcing have reduced the depth of in-house translational medicine expertise and institutional memory at many pharmaceutical and biotech companies: how will they avoid relearning old lessons?
Pharmaceutical industry consolidation and overall research downsizing threatens the ability of companies to benefit from their previous investments in translational research as key leaders with the most knowledge of the successful use of biomarkers and translational pharmacology models are laid off or accept their severance packages. Two recently published books may help to preserve this type of knowledge but much of this type of information is not in the public domain. Here we propose the creation of a translational medicine knowledge repository where companies can submit their translational research data and access similar data from other companies in a precompetitive environment. This searchable repository would become an invaluable resource for translational scientists and drug developers that could speed and reduce the cost of new drug development
HIPAD - A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection
We consider classification tasks in the regime of scarce labeled training
data in high dimensional feature space, where specific expert knowledge is also
available. We propose a new hybrid optimization algorithm that solves the
elastic-net support vector machine (SVM) through an alternating direction
method of multipliers in the first phase, followed by an interior-point method
for the classical SVM in the second phase. Both SVM formulations are adapted to
knowledge incorporation. Our proposed algorithm addresses the challenges of
automatic feature selection, high optimization accuracy, and algorithmic
flexibility for taking advantage of prior knowledge. We demonstrate the
effectiveness and efficiency of our algorithm and compare it with existing
methods on a collection of synthetic and real-world data.Comment: Proceedings of 8th Learning and Intelligent OptimizatioN (LION8)
Conference, 201
Why growth equals power - and why it shouldn't : constructing visions of China
When discussing the success of China's transition from socialism, there is a tendency to focus on growth figures as an indication of performance. Whilst these figures are
indeed impressive, we should not confuse growth with development and assume that the former necessarily automatically generates the latter. Much has been done to
reduce poverty in China, but the task is not as complete as some observers would suggest; particularly in terms of access to health, education and welfare, and also in
dealing with relative (rather than absolute) depravation and poverty. Visions of China have been constructed that exaggerate Chinese development and power in the global
system partly to serve political interests, but partly due to the failure to consider the relationship between growth and development, partly due to the failure to disaggregate
who gets what in China, and partly due to the persistence of inter-national conceptions of globalised production, trade, and financial flows
Allele-specific distribution of RNA polymerase II on female X chromosomes
While the distribution of RNA polymerase II (PolII) in a variety of complex genomes is correlated with gene expression, the presence of PolII at a gene does not necessarily indicate active expression. Various patterns of PolII binding have been described genome wide; however, whether or not PolII binds at transcriptionally inactive sites remains uncertain. The two X chromosomes in female cells in mammals present an opportunity to examine each of the two alleles of a given locus in both active and inactive states, depending on which X chromosome is silenced by X chromosome inactivation. Here, we investigated PolII occupancy and expression of the associated genes across the active (Xa) and inactive (Xi) X chromosomes in human female cells to elucidate the relationship of gene expression and PolII binding. We find that, while PolII in the pseudoautosomal region occupies both chromosomes at similar levels, it is significantly biased toward the Xa throughout the rest of the chromosome. The general paucity of PolII on the Xi notwithstanding, detectable (albeit significantly reduced) binding can be observed, especially on the evolutionarily younger short arm of the X. PolII levels at genes that escape inactivation correlate with the levels of their expression; however, additional PolII sites can be found at apparently silenced regions, suggesting the possibility of a subset of genes on the Xi that are poised for expression. Consistent with this hypothesis, we show that a high proportion of genes associated with PolII-accessible sites, while silenced in GM12878, are expressed in other female cell lines
Effect of an oral [alpha]2-adrenergic blocker (MK-912) on pancreatic islet function in non-insulin-dependent diabetes mellitus
We used MK-912, a potent new selective [alpha]2-adrenergic receptor antagonist that is active orally, to study the effect of short-term, selective [alpha]2-blockade on fasting plasma glucose (FPG) and pancreatic islet function in non-insulin-dependent diabetes (NIDDM). Ten asymptomatic patients with NIDDM received either a single oral dose of MK-912 (2 mg) or placebo in a double-blind, cross-over study. B-cell function was measured by the acute insulin response (AIR) to glucose (1.66 mmol/kg intravenously [IV]) and by the AIR to arginine (5 g IV) during a hyperglycemic glucose clamp at a mean glucose level of 32.1 mmol/L to provide an estimation of maximal B-cell secretory capacity. A-cell function was estimated by the acute glucagon response (AGR) to arginine during the glucose clamp. Effective [alpha]2-adrenergic blockade was apparently achieved, as there were substantial increases of plasma norepinephrine (NE) (P P P P P P P P = .06) and the C-peptide response (P = .07) to glucose compared with placebo. There was a small, but significant, overall treatment effect for both the AIR and AGR to arginine with MK-912 (both P 2-adrenergic blockade; (2) a small decrease of FPG and a small increase of fasting plasma insulin; (3) a small improvement of B-cell function due to an increase in maximal B-cell secretory capacity; and (4) a small increase in basal and stimulated glucagon. These findings suggest that endogenous [alpha]2-adrenergic tone may contribute, although to a small extent, to the impaired B-cell function in NIDDM. If an [alpha]2-blocker becomes available that does not increase BP, studies would be warranted to evaluate its potential impact on glucose regulation in patients with NIDDM.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29070/1/0000105.pd
Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis
Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis
A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients
Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al
Analysis of DNA Methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation
The methylation of cytosines in CpG dinucleotides is essential for cellular differentiation and the progression of many cancers, and it plays an important role in gametic imprinting. To assess variation and inheritance of genome-wide patterns of DNA methylation simultaneously in humans, we applied reduced representation bisulfite sequencing (RRBS) to somatic DNA from six members of a three-generation family. We observed that 8.1% of heterozygous SNPs are associated with differential methylation in cis, which provides a robust signature for Mendelian transmission and relatedness. The vast majority of differential methylation between homologous chromosomes (>92%) occurs on a particular haplotype as opposed to being associated with the gender of the parent of origin, indicating that genotype affects DNA methylation of far more loci than does gametic imprinting. We found that 75% of genotype-dependent differential methylation events in the family are also seen in unrelated individuals and that overall genotype can explain 80% of the variation in DNA methylation. These events are under-represented in CpG islands, enriched in intergenic regions, and located in regions of low evolutionary conservation. Even though they are generally not in functionally constrained regions, 22% (twice as many as expected by chance) of genes harboring genotype-dependent DNA methylation exhibited allele-specific gene expression as measured by RNA-seq of a lymphoblastoid cell line, indicating that some of these events are associated with gene expression differences. Overall, our results demonstrate that the influence of genotype on patterns of DNA methylation is widespread in the genome and greatly exceeds the influence of imprinting on genome-wide methylation patterns.Author Summary DNA methylation is a dynamic epigenetic mark that is essential for mammalian organismal development. DNA methylation levels can be influenced by environment, a chromosome's parental origin, and genome sequence. In this study, we evaluated the impact that DNA sequence has on DNA methylation by analyzing methylation levels in a three-generation family as well as unrelated individuals. By following DNA methylation patterns through the family along with nearby SNPs, we found that allelic differences between chromosomes play a much larger role in determining DNA methylation than the parental origin of the chromosome, indicating that DNA sequence has a larger impact on DNA methylation than gametic imprinting. We also found that allelic differences in DNA methylation found in the family can also be observed in unrelated individuals. In fact, the majority of variation in DNA methylation can be explained by genotype. Our results emphasize the importance of genome sequence in setting patterns of DNA methylation and indicate that genotype will need to be taken into account when assessing DNA methylation in the context of disease
A self-organized model for cell-differentiation based on variations of molecular decay rates
Systemic properties of living cells are the result of molecular dynamics
governed by so-called genetic regulatory networks (GRN). These networks capture
all possible features of cells and are responsible for the immense levels of
adaptation characteristic to living systems. At any point in time only small
subsets of these networks are active. Any active subset of the GRN leads to the
expression of particular sets of molecules (expression modes). The subsets of
active networks change over time, leading to the observed complex dynamics of
expression patterns. Understanding of this dynamics becomes increasingly
important in systems biology and medicine. While the importance of
transcription rates and catalytic interactions has been widely recognized in
modeling genetic regulatory systems, the understanding of the role of
degradation of biochemical agents (mRNA, protein) in regulatory dynamics
remains limited. Recent experimental data suggests that there exists a
functional relation between mRNA and protein decay rates and expression modes.
In this paper we propose a model for the dynamics of successions of sequences
of active subnetworks of the GRN. The model is able to reproduce key
characteristics of molecular dynamics, including homeostasis, multi-stability,
periodic dynamics, alternating activity, differentiability, and self-organized
critical dynamics. Moreover the model allows to naturally understand the
mechanism behind the relation between decay rates and expression modes. The
model explains recent experimental observations that decay-rates (or turnovers)
vary between differentiated tissue-classes at a general systemic level and
highlights the role of intracellular decay rate control mechanisms in cell
differentiation.Comment: 16 pages, 5 figure
Gene–Environment Interactions at Nucleotide Resolution
Interactions among genes and the environment are a common source of phenotypic variation. To characterize the interplay between genetics and the environment at single nucleotide resolution, we quantified the genetic and environmental interactions of four quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency. We first constructed a panel of strains that together carry all 32 possible combinations of the 4 QTN genotypes in 2 distinct genetic backgrounds. We then measured the sporulation efficiencies of these 32 strains across 8 controlled environments. This dataset shows that variation in sporulation efficiency is shaped largely by genetic and environmental interactions. We find clear examples of QTN:environment, QTN: background, and environment:background interactions. However, we find no QTN:QTN interactions that occur consistently across the entire dataset. Instead, interactions between QTN only occur under specific combinations of environment and genetic background. Thus, what might appear to be a QTN:QTN interaction in one background and environment becomes a more complex QTN:QTN:environment:background interaction when we consider the entire dataset as a whole. As a result, the phenotypic impact of a set of QTN alleles cannot be predicted from genotype alone. Our results instead demonstrate that the effects of QTN and their interactions are inextricably linked both to genetic background and to environmental variation
- …