8,548 research outputs found

    Self-adjoint symmetry operators connected with the magnetic Heisenberg ring

    Full text link
    We consider symmetry operators a from the group ring C[S_N] which act on the Hilbert space H of the 1D spin-1/2 Heisenberg magnetic ring with N sites. We investigate such symmetry operators a which are self-adjoint (in a sence defined in the paper) and which yield consequently observables of the Heisenberg model. We prove the following results: (i) One can construct a self-adjoint idempotent symmetry operator from every irreducible character of every subgroup of S_N. This leads to a big manifold of observables. In particular every commutation symmetry yields such an idempotent. (ii) The set of all generating idempotents of a minimal right ideal R of C[S_N] contains one and only one idempotent which ist self-adjoint. (iii) Every self-adjoint idempotent e can be decomposed into primitive idempotents e = f_1 + ... + f_k which are also self-adjoint and pairwise orthogonal. We give a computer algorithm for the calculation of such decompositions. Furthermore we present 3 additional algorithms which are helpful for the calculation of self-adjoint operators by means of discrete Fourier transforms of S_N. In our investigations we use computer calculations by means of our Mathematica packages PERMS and HRing.Comment: 13 page

    Aluminide coatings for nickel base alloys

    Get PDF
    The metalliding process was used to aluminide IN-100 and TD NiCr. Aluminum was deposited over a broad range of deposition rates, with two types of coating structures resulting. Chromium, silicon, titanium and yttrium were also individually deposited simutaneously with aluminum on IN-100. None of these had a marked effect on the oxidation resistance of the aluminide coating. Porosity-free aluminide coatings with good oxidation resistance were formed on TD NiCr providing the aluminum concentration did not exceed 8 percent, the limit of solubility in the gamma phase

    Moist turbulent Rayleigh-Benard convection with Neumann and Dirichlet boundary conditions

    Full text link
    Turbulent Rayleigh-Benard convection with phase changes in an extended layer between two parallel impermeable planes is studied by means of three-dimensional direct numerical simulations for Rayleigh numbers between 10^4 and 1.5\times 10^7 and for Prandtl number Pr=0.7. Two different sets of boundary conditions of temperature and total water content are compared: imposed constant amplitudes which translate into Dirichlet boundary conditions for the scalar field fluctuations about the quiescent diffusive equilibrium and constant imposed flux boundary conditions that result in Neumann boundary conditions. Moist turbulent convection is in the conditionally unstable regime throughout this study for which unsaturated air parcels are stably and saturated air parcels unstably stratified. A direct comparison of both sets of boundary conditions with the same parameters requires to start the turbulence simulations out of differently saturated equilibrium states. Similar to dry Rayleigh-Benard convection the differences in the turbulent velocity fluctuations, the cloud cover and the convective buoyancy flux decrease across the layer with increasing Rayleigh number. At the highest Rayleigh numbers the system is found in a two-layer regime, a dry cloudless and stably stratified layer with low turbulence level below a fully saturated and cloudy turbulent one which equals classical Rayleigh-Benard convection layer. Both are separated by a strong inversion that gets increasingly narrower for growing Rayleigh number.Comment: 19 pages, 13 Postscript figures, Figures 10,11,12,13, in reduced qualit

    Encoding dynamics for multiscale community detection: Markov time sweeping for the Map equation

    Get PDF
    The detection of community structure in networks is intimately related to finding a concise description of the network in terms of its modules. This notion has been recently exploited by the Map equation formalism (M. Rosvall and C.T. Bergstrom, PNAS, 105(4), pp.1118--1123, 2008) through an information-theoretic description of the process of coding inter- and intra-community transitions of a random walker in the network at stationarity. However, a thorough study of the relationship between the full Markov dynamics and the coding mechanism is still lacking. We show here that the original Map coding scheme, which is both block-averaged and one-step, neglects the internal structure of the communities and introduces an upper scale, the `field-of-view' limit, in the communities it can detect. As a consequence, Map is well tuned to detect clique-like communities but can lead to undesirable overpartitioning when communities are far from clique-like. We show that a signature of this behavior is a large compression gap: the Map description length is far from its ideal limit. To address this issue, we propose a simple dynamic approach that introduces time explicitly into the Map coding through the analysis of the weighted adjacency matrix of the time-dependent multistep transition matrix of the Markov process. The resulting Markov time sweeping induces a dynamical zooming across scales that can reveal (potentially multiscale) community structure above the field-of-view limit, with the relevant partitions indicated by a small compression gap.Comment: 10 pages, 6 figure

    Approximating Spectral Impact of Structural Perturbations in Large Networks

    Full text link
    Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ranking subgraphs of real complex networks.Comment: 9 pages, 3 figures, 2 table

    Molecular Clock on a Neutral Network

    Full text link
    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating the topological structure of a neutral network from empirical measurements of the substitution process.Comment: 10 page

    Finding community structure in very large networks

    Full text link
    The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O(m d log n) where d is the depth of the dendrogram describing the community structure. Many real-world networks are sparse and hierarchical, with m ~ n and d ~ log n, in which case our algorithm runs in essentially linear time, O(n log^2 n). As an example of the application of this algorithm we use it to analyze a network of items for sale on the web-site of a large online retailer, items in the network being linked if they are frequently purchased by the same buyer. The network has more than 400,000 vertices and 2 million edges. We show that our algorithm can extract meaningful communities from this network, revealing large-scale patterns present in the purchasing habits of customers

    Global interlaboratory assessments of perfluoroalkyl substances under the Stockholm Convention on persistent organic pollutants

    Get PDF
    The Global Monitoring Plan (GMP) according to article 16 of the Stockholm Convention on Persistent Organic Pollutants (POPs) requires that POP laboratories must be capable – at any time – to analyse samples for POPs within a variation of ±25%. Based on this target error of 25%, a statistical model using z-scores was applied to assess the performance of analytical laboratories for POPs and a number of matrices. Since the second round of these ‘Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants (POPs)’, carried out in 2012/2013, perfluoroalkyl substances (PFASs) have been included into the proficiency tests. The third round was carried out in 2016/2017. The test materials included test solutions of PFASs analytical standards, the abiotic matrices sediment, air (extract) and water and the biotic matrices fish, human milk and human plasma. The number of laboratories submitting results for PFASs remained quite stable (IL2 = 27 laboratories; IL3 = 29), but there was broader geographic distribution observed in IL3: in addition to the laboratories from Asia and the Western Europe/other groups, two laboratories from Africa participated, two from Central-Eastern Europe and one from the Latin American/Caribbean region. Considering that PFASs were introduced for the first time in round 2, the results were good to reasonable compared to those of a number of other POPs included in the same study. However, it shall also be mentioned that for some matrices and PFASs, the number of laboratories submitting results was too small and the results too scattered to derive a consensus value. This was especially true for the PFOS precursor compounds and the air matrix. Also, laboratories struggle with the analysis of the branched PFOS isomers. These interlaboratory assessments on PFASs gave promising results and demonstrated the importance of proficiency tests in an international environment to generate trust in laboratory results. The need to participate regularly in such intercomparison assessments is highlighted. The results show the current level of PFAS analysis, which varies by laboratory and by matrix rather than per geographic region
    • …
    corecore