1,710 research outputs found

    Non-positivity of Groenewold operators

    Full text link
    A central feature in the Hilbert space formulation of classical mechanics is the quantisation of classical Liouville densities, leading to what may be termed term Groenewold operators. We investigate the spectra of the Groenewold operators that correspond to Gaussian and to certain uniform Liouville densities. We show that when the classical coordinate-momentum uncertainty product falls below Heisenberg's limit, the Groenewold operators in the Gaussian case develop negative eigenvalues and eigenvalues larger than 1. However, in the uniform case, negative eigenvalues are shown to persist for arbitrarily large values of the classical uncertainty product.Comment: 9 pages, 1 figures, submitted to Europhysics Letter

    Group Theory and Quasiprobability Integrals of Wigner Functions

    Full text link
    The integral of the Wigner function of a quantum mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0,1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric disks and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in Hilbert space carrying the positive discrete series representations of the algebra su(1,1)or so(2,1). The explicit relation between the spectra of operators associated with disks and circles with proportional radii, is given in terms of the dicrete variable Meixner polynomials.Comment: 11 pages, latex fil

    Conservation laws for invariant functionals containing compositions

    Full text link
    The study of problems of the calculus of variations with compositions is a quite recent subject with origin in dynamical systems governed by chaotic maps. Available results are reduced to a generalized Euler-Lagrange equation that contains a new term involving inverse images of the minimizing trajectories. In this work we prove a generalization of the necessary optimality condition of DuBois-Reymond for variational problems with compositions. With the help of the new obtained condition, a Noether-type theorem is proved. An application of our main result is given to a problem appearing in the chaotic setting when one consider maps that are ergodic.Comment: Accepted for an oral presentation at the 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2007), to be held in Pretoria, South Africa, 22-24 August, 200

    Phase space spinor amplitudes for spin 1/2 systems

    Get PDF
    The concept of phase space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-\half is treated in detail, and it is shown that phase space amplitudes on the sphere transform correctly as spinors under under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-\half magnetic dipole in a time-dependent magnetic field.Comment: 19 pages, added new results, fixed typo

    The quantum state vector in phase space and Gabor's windowed Fourier transform

    Full text link
    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed `window state vector'. Here aspects of this construction are explored, with emphasis on the connection with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of window are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schr\"odinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and further references adde

    Quantum integrability and exact solution of the supersymmetric U model with boundary terms

    Get PDF
    The quantum integrability is established for the one-dimensional supersymmetric UU model with boundary terms by means of the quantum inverse scattering method. The boundary supersymmetric UU chain is solved by using the coordinate space Bethe ansatz technique and Bethe ansatz equations are derived. This provides us with a basis for computing the finite size corrections to the low lying energies in the system.Comment: 4 pages, RevTex. Some cosmetic changes. The version to appear in Phys. Rev.

    Comments on Drinfeld Realization of Quantum Affine Superalgebra Uq[gl(mn)(1)]U_q[gl(m|n)^{(1)}] and its Hopf Algebra Structure

    Full text link
    By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain Drinfeld current realization for quantum affine superalgebra Uq[gl(mn)(1)]U_q[gl(m|n)^{(1)}]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.Comment: Some errors and misprints corrected and a remark in section 4 removed. 12 pages, Latex fil

    On the solution of a supersymmetric model of correlated electrons

    Get PDF
    We consider the exact solution of a model of correlated electrons based on the superalgebra Osp(22)Osp(2|2). The corresponding Bethe ansatz equations have an interesting form. We derive an expression for the ground state energy at half filling. We also present the eigenvalue of the transfer matrix commuting with the Hamiltonian.Comment: Palin latex , 8 page

    Parafermionic algebras, their modules and cohomologies

    Full text link
    We explore the Fock spaces of the parafermionic algebra introduced by H.S. Green. Each parafermionic Fock space allows for a free minimal resolution by graded modules of the graded 2-step nilpotent subalgebra of the parafermionic creation operators. Such a free resolution is constructed with the help of a classical Kostant's theorem computing Lie algebra cohomologies of the nilpotent subalgebra with values in the parafermionic Fock space. The Euler-Poincar\'e characteristics of the parafermionic Fock space free resolution yields some interesting identities between Schur polynomials. Finally we briefly comment on parabosonic and general parastatistics Fock spaces.Comment: 10 pages, talk presented at the International Workshop "Lie theory and its applications in Physics" (17-23 June 2013, Varna, Bulgaria

    A Chiral Schwinger model, its Constraint Structure and Applications to its Quantization

    Full text link
    The Jackiw-Rajaraman version of the chiral Schwinger model is studied as a function of the renormalization parameter. The constraints are obtained and they are used to carry out canonical quantization of the model by means of Dirac brackets. By introducing an additional scalar field, it is shown that the model can be made gauge invariant. The gauge invariant model is quantized by establishing a pair of gauge fixing constraints in order that the method of Dirac can be used.Comment: 18 page
    corecore