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Quantum integrability and exact solution of the supersymmetricU model with boundary terms
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Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia
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Quantum integrability is established for the one-dimensional supersymrietriodel with boundary terms
by means of the quantum inverse-scattering method. The boundary supersynureiem is solved by using
the coordinate-space Bethe-ansatz technique and Bethe-ansatz equations are derived. This provides us with a
basis for computing the finite-size corrections to the low-lying energies in the system.
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In recent years, there has been a considerable interest in : L
exactly solvable lattice models with boundary fields and/or  Hjjj+1= —g (CjoCi+10 T H.CIBXA— 3 7N)
interactions:™ One class of such models are one-

dimensional boundary strongly correlated electron systems, . U

which is of great importance due to their promising role in ~2Mjs1-0)F 5 (NN + NN
theoretical condensed-matter physics and possibly in Tigh-

superconductivity. Boundary conditions for such systems, +tp(cl il ciia CiaHH.C)+ (N0 ),
which are compatible with integrability in the bulk, are con- )

structed from solutions of thégraded reflection equations

(called boundaryk matrices. Work in this direction has andBy, By are boundary terms

been done for the Hubbard-like modefand for the super- AU+2) [ 2

symmetrict-J model®~** =— 2U+2) Znpng _nl),
In this paper, we study integrable open-boundary condi- U@-¢)le thH

tions for the supersymmetrid model of strongly correlated

electrons introduced in Refs. 12 and 13 and extensively in- _ 2(U+2)

vestigated in Refs. 14—16. We will present a boundary su- "uU2-éy)

persymmetridJ model and show that it can be derived from n the

the quantum inverse-scattering method by modifying anA

generalizing Sklyanin’s arguments, thus establishing th

guantum integrability of the boundary model. In doing so, Some remarks are order. As is seen from @i.B, (B,,)

we encounter the following complication: Sklyanin’s defini- is an inhomogdenous combination of two terms contributin
tion for a boundary Hamiltonian cannot apply since the Su_to the left(ri hgt) boundary conditions. The physical meanin ;
pertrace of the boundatg matrices of zero spectral param- 9 y ' phy 9

eter is equal to zero for the current case. This is related to th%f these terms in the context of strongly correlated electrons

are the following. The first term is nothing but a boundary
fact that the supersymmetrld model has been constructed . ! . .
; . . . on-site Coulomb interaction and the second term is a bound-
from the R matrix associated with thetypical four- arv chemical potential
dimensional irreducible representation of di{2. Neverthe- y P :

less we manage to solve this complication by introducing 8 We will establish the quantum integrability of the bound-
new definition for a Hamiltonian. We then solve the bound-=. supersymmetrit) model (1) by showing that it can be

ary supersymmetrit) model by the coordinate-space Bethe- derived from the quantum inverse scattering method. Let us

ansatz approach and derive the Bethe-ansatz equations recall that the Hamiltonian of the supersymmetdcmodel
Tpp e : q .~ with the periodic boundary conditions commutes with the
Letc; , andc; , denote fermionic creation and annihila-

. : . o ; _ .~ transfer matrix, which is the supertrace of the monodromy
tion operators with spinr at sitej, which satisfy the anti-

matrix T(u),
commutation relations given bﬁCIU,Cj'T}:ﬁijﬁgra where (1)
i,j=1,2,...L and o,7=1,|. We consider the following T(u)=Rg(u)- - - Rgy(u). (4)
Hamiltonian with boundary terms

2
anLTnLl_nL)' 3

above equationsy;,, is the number density operator
nj(,=c]-Tcho, nj=n;;+n;; and t,?:' U/2==x[1—-exp(-7n)];
. are some parameters describing boundary effects.

The explicit form of the quanturR matrix Ry;(u) is given in
Ref. 12. Hereu is the spectral parameter, and the subscript O

L-1 denotes the auxiliary superspa¢e= C22. It should be noted
H= E HjQ,j+1+ By +B, (1)  thatthe supertrace is carried out for the auxiliary superspace
j=1 V. The elements of the supermatiiXu) are the generators

of two associative superalgebradefined by the relations

whereHjQ‘jJrl is the local Hamiltonian of the supersymmetric  Ry,(u;—Uy) TH(U) T?(Up) = T2(U,) TH(Up)Ryp( U — Uy),
U model introduced in Ref. 13:
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where X!'=X®1, X?=1@X for any supermatrix X  with A_(u)=(2—2a—¢&,—u)(2a+é,+u), B,(u)=
e End(V). For later use, we list some useful properties en{—2a—¢, +u)(2a+¢é,+u), and C.(u)=(—-2a—¢&,
joyed by theR matrix: (i) unitarity: Rj5(U)Ry(—u)=1 and +u)(2+2a+ &, —u).

(i) crossing-unitarity: RC2(—u+2)RSI(u)=p(u) with Now it can be shown that Hamiltonid#) is related to the

~ 2 2 transfer matrix7(u) (up to an unimportant additive con-
p(u) being a scalar functionp(u)=u?(2—u)?/[(2+2a stani: P P

—u)?(2a+u)?]. Throughout this letterg=2/U.
In order to describe integrable electronic models on open

chains, we introduce an associative superalgebraand 7, __ 2(U+2) HR

defined by theR matrix R(u; —u,) and the relations ] '

Ryz(U; — Up) T (Ug) Rpa( Uy +Up) T2 (uy) : L1
2 ! re 7O S R Tk

=T (Uz)Ryx(U;+Uz)7T-(Uy)Ryy(U;—Uy), (6) TavEaw) & it (0)
Rstlistz(_u +u )Tlstl(u )R z(_u —u +2)Tzist2(u ) 1
S ¥ 5 (str[K2.(0) Gy o]+ 2 stro K IO HR

2isty 1st; 2(V+2W)
=T, ?(U)Rog(—Up—Ux+2)7 " *(uy) . .

stjist +Str0[K+(0)(HL0) ]}, (13)
XR; A(—uptuy), 7

respectively. Here the supertranspositist), (u=1,2) is where

only carried out in theuth factor superspace oV®V, ) o R
whereasst, denotes the inverse operationsif, . By modi- V=stroK,(0), W=strg[KL(0)H ],
fying Sklyanin’s argumentS,one may show that the quanti-
ties 7(u) given by 7(u)=str[7,(u)7_(u)] constitute a
commutative family, i.e.[ 7(uq),7(u,)]=0.

T 2:3 g_anbObéagoziﬁ;S_s(ag rteo agiag??ﬁeogot:]nf superalgebraﬁere P; ; denotes the graded permutation operator acting on
* -y - the ith andjth quantum spaces. Equatidb3d) implies that

_ = -1, the boundary supersymmetrld model admits an infinite
TW=T-(WT(OT_(~uw, number of conserved currents that are in involution with
each other, thus assuring its integrability. It should be em-

HY =P R/ ;(0), G;;=P;;R;(0). (14)

T =THWTFWTI (W] (8 phasized that Hamiltoniafl) appears as the second deriva-

with tive of the transfer matrix-(u) with respect to the spectral
parameteru at u=0. This is due to the fact that the super-
T_(u)=Rgm(u)- - -Rgy(u), trace ofK , (0) is equal to zero. As we mentioned before, the

reason for the zero supertracekof (0) is related to the fact

T (U)=Ry (U)- - -Roms1(U), 7Z=(u)=K.(u), (9 thatthe quantum space is the four-dimensiagpical irre-
’ ducible representation of gl(2). A similar situation also
whereK . (u), called boundarK matrices, are representa- gccurs in the Hubbard-like modéis.
tions of 7. in Grassmann algebra. Having established the quantum integrability of the
We now solve Eqs(6) and(7) for K (u) andK _(u). For  boundary supersymmetrld model, we now solve it by us-
simplicity, let us restrict ourselves to the diagonal caseing the coordinate-space Bethe-ansatz method. Let us as-

Then, one may check that the matkx (u) given by sume that the eigenfunction of Hamiltoniét) has the form
1
K_(u)= —=——diag/A_(u),B_(u),B_(u),C_(u)),
( ) §7(2—§,) g ( ) ( ) ( ) ( )) |\If>: 2 \P(rl ..... (rN(le e vXN)C)tlal T 'CIN”N|0>'
(10 {09}

where A_(u)=(é_+u)(2—&_—-u), B_(uW=(é_—u)
(2—&_—u), andC_(u)=(&_—u)(2—&_+u) satisfy Eq.  Vor...on(X1, -+ Xn)
(6). The matrixK_(u) can be obtained from the isomor-

N
phism of the superalgebras and7, . Indeed, given a so- :2 €pA, o (Kpog, - .. K )exp( i E k x)
lution 7 of Eq. (6), thenT, (u) defined by R CE R PN =R

T (W =T (~u+1) (1 (19
is a solution of Eq(7). The proof follows from some alge- Where the summation is taken over all permutations and ne-
braic computations upon substituting E4.) into Eq.(7)  gations ofky, ... ky, andQ is the permutation of th&\
and making use of the properties of tRematrix. Therefore, particles such thatExg; < - - <Xqn<L. The symbolep is
one may choose the boundary matiix (u) as a sign factor+=1 and changes its sign under each “muta-

tion.” Substituting the wave function into the eigenvalue
K, (u)=diag/A,(u),B,(u),B,(u),C,(u)) (120  equationH|¥)=E|¥), one gets
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A i AR QP KKy ..0) S, (k) =S 1(kj k1) - . . Sy 1(kj k),
S (ki ki)A ( ki k ) 9
It A R E RN R R S R R (k) =Sy(ky, —kj) ... §_1j(kj—1,—kj),
— K. = L .t .
A"iv---( kl’ co)=S (kJ’plffi)A"iv---(kJ’ s (16 Rr(kj):SHl,i(kHly_ki)---SN,j(kN,_kj)-
This problem may be solved using the algebraic Bethe-
A""‘Ti( o '_k]_):SR(kj §pLgi)A.. (oK), ansatz method. The Bethe-ansatz equations are

iki2(L+1) 501, - .
with S;;(k; ,k;) being the two-particle scattering matrix and e ¢(k;3p1) (ks pu)
st,sR the boundary scattering matrices:

c c
S (ks k)= (k) — 0(k)) +icP; 10 2 2’
j (K, Kj)= ra— = c c
PR (k) — 0(k)) +ic TN BN
l_pla-eikj c c
st (ki:p1y)= ———, 1 _ i = i—
(Kj;P1s,) TE—— (17) N No=Oi+is Nt O+is
ik ’Hlx 0 i At O~
1_p|_0__ IKj _ a j_l_ a j_l_
SR(k; PLo)= —'ikeZ|kj(L+1), 2 2
1= Proe U N hgHic N hgtic .
where " p=1 Ng—Apg—iC N+ Ng—ic’ (21)
B+ a
_ :_1+2(U+2) 1 where 6;=0(k;) and {(k;p)=(1—pe *)/(1—pe*). The
P1o=P1 U 2—¢° energy eigenvalueE of the model is given byE=
—22}\‘:1 cosk;, where we have dropped an additive con-
20U+2) 1 stant.
PLo=pL=—1+ U 2-¢&.° In conclusion, we have studied integrable open-boundary

] ) ] conditions for the supersymmetri¢ model. Its quantum in-
andc=e”—1; P; is a spin permutation operator and the tegrability follows from the fact that the Hamiltonian of the
Charge rapIdItIeSH(k]) are related to the Single-particle model on the open chain may be embedded into a one-
quasimoment; by 6(k) =3 tan(k/2).!* Then, the diagonal- parameter family of commuting transfer matrices. Moreover,
ization of Hamiltonian(1) reduces to solving the following the Bethe-ansatz equations are derived with the use of the
matrix eigenvalue equation: coordinate-space Bethe-ansatz approach. This provides us
Tt=t, j=1 N (18 with a basis for computing the finite-size corrections to the

I Tl low-lying energies in the system, which in turn allows us to
where t denotes an eigenvector on the space of the spitise the boundary conformal field theory technique to study
variables andr; takes the form the critical properties of the boundary. The details will be

~ . - . o . treated in a separate publication.
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