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Quantum integrability and exact solution of the supersymmetricU model with boundary terms
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Quantum integrability is established for the one-dimensional supersymmetricU model with boundary terms
by means of the quantum inverse-scattering method. The boundary supersymmetricU chain is solved by using
the coordinate-space Bethe-ansatz technique and Bethe-ansatz equations are derived. This provides us with a
basis for computing the finite-size corrections to the low-lying energies in the system.
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In recent years, there has been a considerable intere
exactly solvable lattice models with boundary fields and
interactions.1–3 One class of such models are on
dimensional boundary strongly correlated electron syste
which is of great importance due to their promising role
theoretical condensed-matter physics and possibly in highTc

superconductivity.4 Boundary conditions for such system
which are compatible with integrability in the bulk, are co
structed from solutions of the~graded! reflection equations
~called boundaryK matrices!.1 Work in this direction has
been done for the Hubbard-like models5–8 and for the super-
symmetrict-J model.9–11

In this paper, we study integrable open-boundary con
tions for the supersymmetricU model of strongly correlated
electrons introduced in Refs. 12 and 13 and extensively
vestigated in Refs. 14–16. We will present a boundary
persymmetricU model and show that it can be derived fro
the quantum inverse-scattering method by modifying a
generalizing Sklyanin’s arguments, thus establishing
quantum integrability of the boundary model. In doing s
we encounter the following complication: Sklyanin’s defin
tion for a boundary Hamiltonian cannot apply since the
pertrace of the boundaryK matrices of zero spectral param
eter is equal to zero for the current case. This is related to
fact that the supersymmetricU model has been constructe
from the R matrix associated with thetypical four-
dimensional irreducible representation of gl(2u1). Neverthe-
less we manage to solve this complication by introducin
new definition for a Hamiltonian. We then solve the boun
ary supersymmetricU model by the coordinate-space Beth
ansatz approach and derive the Bethe-ansatz equations

Let cj ,s
† andcj ,s denote fermionic creation and annihila

tion operators with spins at site j , which satisfy the anti-
commutation relations given by$ci ,s

† ,cj ,t%5d i j dst , where
i , j 51,2, . . . ,L and s,t5↑,↓. We consider the following
Hamiltonian with boundary terms

H5 (
j 51

L21

H j , j 11
Q 1Blt1Brt , ~1!

whereH j , j 11
Q is the local Hamiltonian of the supersymmetr

U model introduced in Ref. 13:
PRB 580163-1829/98/58~1!/51~3!/$15.00
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H j , j 11
Q 52(

s
~cj s

† cj 11s1H.c.!exp~2 1
2 hnj ,2s

2 1
2 hnj 11,2s!1

U

2
~nj↑nj↓1nj 11↑nj 11↓!

1tp~cj↑
† cj↓

† cj 11↓cj 11↑1H.c.!1~nj1nj 11!,

~2!

andBlt , Brt are boundary terms

Blt52
2~U12!

U~22j2!S 2

j2
n1↑n1↓2n1D ,

Brt52
2~U12!

U~22j1!S 2

j1
nL↑nL↓2nLD . ~3!

In the above equations,nj s is the number density operato
nj s5cj s

† cj s , nj5nj↑1nj↓ and tp5U/256@12exp(2h)#;
j6 are some parameters describing boundary effects.

Some remarks are order. As is seen from Eq.~3!, Blt (Brt)
is an inhomogenous combination of two terms contribut
to the left~right! boundary conditions. The physical meanin
of these terms in the context of strongly correlated electr
are the following. The first term is nothing but a bounda
on-site Coulomb interaction and the second term is a bou
ary chemical potential.

We will establish the quantum integrability of the boun
ary supersymmetricU model ~1! by showing that it can be
derived from the quantum inverse scattering method. Le
recall that the Hamiltonian of the supersymmetricU model
with the periodic boundary conditions commutes with t
transfer matrix, which is the supertrace of the monodro
matrix T(u),

T~u!5R0L~u!•••R01~u!. ~4!

The explicit form of the quantumR matrix R0 j (u) is given in
Ref. 12. Hereu is the spectral parameter, and the subscrip
denotes the auxiliary superspaceV5C2,2. It should be noted
that the supertrace is carried out for the auxiliary supersp
V. The elements of the supermatrixT(u) are the generators
of two associative superalgebraA defined by the relations

R12~u12u2!T1~u1!T2~u2!5T2~u2!T1~u1!R12~u12u2!,
~5!
51 © 1998 The American Physical Society
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where X1[X^ 1, X2[1^ X for any supermatrix X
PEnd(V). For later use, we list some useful properties e
joyed by theR matrix: ~i! unitarity: R12(u)R21(2u)51 and
~ii ! crossing-unitarity: R12

st2(2u12)R21
st1(u)5 r̃(u) with

r̃(u) being a scalar function,r̃(u)5u2(22u)2/@(212a
2u)2(2a1u)2#. Throughout this letter,a52/U.

In order to describe integrable electronic models on o
chains, we introduce an associative superalgebrasT2 andT1

defined by theR matrix R(u12u2) and the relations

R12~u12u2!T 2
1 ~u1!R21~u11u2!T2

2 ~u2!

5T2
2 ~u2!R12~u11u2!T2

1 ~u1!R21~u12u2!, ~6!

R21
st1ist2~2u11u2!T 1

1st1~u1!R12~2u12u212!T 1

2ist2~u2!

5T
1

2ist2~u2!R21~2u12u212!T 1

1st1~u1!

3R12
st1ist2~2u11u2!, ~7!

respectively. Here the supertranspositionstm (m51,2) is
only carried out in themth factor superspace ofV^ V,
whereasistm denotes the inverse operation ofstm . By modi-
fying Sklyanin’s arguments,1 one may show that the quant
ties t(u) given by t(u)5str@T1(u)T2(u)# constitute a
commutative family, i.e.,@t(u1),t(u2)#50.

One can obtain a class of realizations of the superalge
T1 andT2 by choosingT6(u) to be of the form

T2~u!5T2~u!T̃2~u!T2
21~2u!,

T1
st~u!5T1

st~u!T̃ 1
st~u!@T1

21~2u!#st ~8!

with

T2~u!5R0M~u!•••R01~u!,

T1~u!5R0L~u!•••R0,M11~u!, T̃6~u!5K6~u!, ~9!

whereK6(u), called boundaryK matrices, are representa
tions of T6 in Grassmann algebra.

We now solve Eqs.~6! and~7! for K1(u) andK2(u). For
simplicity, let us restrict ourselves to the diagonal ca
Then, one may check that the matrixK2(u) given by

K2~u!5
1

j2~22j2!
diag„A2~u!,B2~u!,B2~u!,C2~u!…,

~10!

where A2(u)5(j21u)(22j22u), B2(u)5(j22u)
(22j22u), and C2(u)5(j22u)(22j21u) satisfy Eq.
~6!. The matrix K1(u) can be obtained from the isomo
phism of the superalgebrasT2 andT1 . Indeed, given a so
lution T2 of Eq. ~6!, thenT1(u) defined by

T 1
st~u!5T2~2u11! ~11!

is a solution of Eq.~7!. The proof follows from some alge
braic computations upon substituting Eq.~11! into Eq. ~7!
and making use of the properties of theR matrix. Therefore,
one may choose the boundary matrixK1(u) as

K1~u!5diag„A1~u!,B1~u!,B1~u!,C1~u!… ~12!
-

n

as

.

with A1(u)5(222a2j12u)(2a1j11u), B1(u)5
(22a2j11u)(2a1j11u), and C1(u)5(22a2j1

1u)(212a1j12u).
Now it can be shown that Hamiltonian~1! is related to the

transfer matrixt(u) ~up to an unimportant additive con
stant!:

H52
2~U12!

U
HR,

HR5
t9~0!

4~V12W!
5 (

j 51

L21

H j , j 11
R 1

1

2
K28

1~0!

1
1

2~V12W!
$str0@K1

0 ~0!GL0#12 str0@K18
0~0!HL0

R #

1str0@K1
0 ~0!~HL0

R !2#%, ~13!

where

V5str0K18 ~0!, W5str0@K1
0 ~0!HL0

R #,

Hi , j
R 5Pi , jRi , j8 ~0!, Gi , j5Pi , jRi , j9 ~0!. ~14!

HerePi , j denotes the graded permutation operator acting
the i th and j th quantum spaces. Equation~13! implies that
the boundary supersymmetricU model admits an infinite
number of conserved currents that are in involution w
each other, thus assuring its integrability. It should be e
phasized that Hamiltonian~1! appears as the second deriv
tive of the transfer matrixt(u) with respect to the spectra
parameteru at u50. This is due to the fact that the supe
trace ofK1(0) is equal to zero. As we mentioned before, t
reason for the zero supertrace ofK1(0) is related to the fact
that the quantum space is the four-dimensionaltypical irre-
ducible representation of gl(2u1). A similar situation also
occurs in the Hubbard-like models.6

Having established the quantum integrability of t
boundary supersymmetricU model, we now solve it by us-
ing the coordinate-space Bethe-ansatz method. Let us
sume that the eigenfunction of Hamiltonian~1! has the form

uC&5 (
$~xj ,s j !%

Cs1 , . . . ,sN
~x1 , . . . ,xN!cx1s1

† . . . cxNsN

† u0&,

Cs1, . . . ,sN~x1 , . . . ,xN!

5(
P

ePAsQ1 , . . . ,sQN
~kPQ1 , . . . ,kPQN!expS i (

j 51

N

kPj
xj D ,

~15!

where the summation is taken over all permutations and
gations ofk1 , . . . ,kN , and Q is the permutation of theN
particles such that 1<xQ1<•••<xQN<L. The symboleP is
a sign factor61 and changes its sign under each ‘‘mut
tion.’’ Substituting the wave function into the eigenvalu
equationHuC&5EuC&, one gets



d

e

p

he-

n-

ary

e
ne-
er,
the

s us
the
to

udy
be

cil,
En-
e-
for

PRB 58 53BRIEF REPORTS
A . . . ,s j ,s i , . . .~ . . . ,kj ,ki , . . . !

5Si j ~ki ,kj !A . . . ,s i ,s j , . . .~ . . . ,ki ,kj , . . . !,

As i , . . .~2kj , . . . !5sL~kj ;p1s i
!As i , . . .~kj , . . . !,

~16!

A . . . ,s i
~ . . . ,2kj !5sR~kj ;pLs i

!A . . . ,s i
~ . . . ,kj !,

with Si j (ki ,kj ) being the two-particle scattering matrix an
sL,sR the boundary scattering matrices:

Si j ~ki ,kj !5
u~ki !2u~kj !1 icPi j

u~ki !2u~kj !1 ic
,

sL~kj ;p1s i
!5

12p1s i
eik j

12p1s i
e2 ik j

, ~17!

sR~kj ;pLs i
!5

12pLs i
e2 ik j

12pLs i
eik j

e2ik j ~L11!,

where

p1s[p15211
2~U12!

U

1

22j2
,

pLs[pL5211
2~U12!

U

1

22j1
,

and c5eh21; Pi j is a spin permutation operator and th
charge rapiditiesu(kj ) are related to the single-particle
quasimomentakj by u(k)5 1

2 tan(k/2).14 Then, the diagonal-
ization of Hamiltonian~1! reduces to solving the following
matrix eigenvalue equation:

Tj t5t, j 51, . . . ,N, ~18!

where t denotes an eigenvector on the space of the s
variables andTj takes the form

Tj5Sj
2~kj !s

L~2kj ;p1s j
!Rj

2~kj !Rj
1~kj !s

R~kj ;pLs j
!Sj

1~kj !

~19!

with

Sj
1~kj !5Sj ,N~kj ,kN! . . . Sj , j 11~kj ,kj 11!,
n

e

in

Sj
2~kj !5Sj , j 21~kj ,kj 21! . . . Sj ,1~kj ,k1!,

~20!

Rj
2~kj !5S1,j~k1 ,2kj ! . . . Sj 21,j~kj 21 ,2kj !,

Rj
1~kj !5Sj 11,j~kj 11 ,2kj ! . . . SN, j~kN ,2kj !.

This problem may be solved using the algebraic Bet
ansatz method. The Bethe-ansatz equations are

eik j2~L11!z~kj ;p1!z~kj ;pL!

5 )
b51

M u j2lb1 i
c

2

u j2lb2 i
c

2

u j1lb1 i
c

2

u j1lb2 i
c

2

,

)
j 51

N la2u j1 i
c

2

la2u j2 i
c

2

la1u j1 i
c

2

la1u j2 i
c

2

5 )
b51
bÞa

M
la2lb1 ic

la2lb2 ic

la1lb1 ic

la1lb2 ic
, ~21!

where u j[u(kj ) and z(k;p)5(12pe2 ik)/(12peik). The
energy eigenvalueE of the model is given byE5
22( j 51

N coskj , where we have dropped an additive co
stant.

In conclusion, we have studied integrable open-bound
conditions for the supersymmetricU model. Its quantum in-
tegrability follows from the fact that the Hamiltonian of th
model on the open chain may be embedded into a o
parameter family of commuting transfer matrices. Moreov
the Bethe-ansatz equations are derived with the use of
coordinate-space Bethe-ansatz approach. This provide
with a basis for computing the finite-size corrections to
low-lying energies in the system, which in turn allows us
use the boundary conformal field theory technique to st
the critical properties of the boundary. The details will
treated in a separate publication.

This work was supported by Australian Research Coun
University of Queensland New Staff Research Grant and
abling Research Grant. H.-Q.Z. would like to thank the D
partment of Mathematics of the University of Queensland
kind hospitality.
J.

s.
*Electronic address: yzz@maths.uq.edu.au
† Present address: Dept. of Physics, Chongqing University, Cho

qing 630044, China. Electronic address: hqzhou@cqu.edu.cn
1E. K. Sklyanin, J. Phys. A21, 2375~1988!.
2L. Mezincescu and R. Nepomechie, J. Phys. A24, L17 ~1991!.
3H. J. de Vega and A. Gonza´lez-Ruiz, J. Phys. A26, L519 ~1993!.
4F. H. L. Essler, V. E. Korepin, and K. Schoutens, Phys. Rev. L

68, 2960~1992!; 70, 73 ~1993!.
5H. J. Schulz, J. Phys. C18, 581 ~1985!.
6H.-Q. Zhou, Phys. Rev. B54, 41 ~1996!; 53, 5098~1996!.
7H. Asakawa and M. Suzuki, J. Phys. A29, 225 ~1996!.
8M. Shiroishi and M. Wadati, J. Phys. Soc. Jpn.66, 1 ~1997!.
g-

tt.
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