1,497 research outputs found
Pion transition form factor at the two-loop level vis-\`a-vis experimental data
We use light-cone QCD sum rules to calculate the pion-photon transition form
factor, taking into account radiative corrections up to the
next-to-next-to-leading order of perturbation theory. We compare the obtained
predictions with all available experimental data from the CELLO, CLEO, and the
BaBar Collaborations. We point out that the BaBar data are incompatible with
the convolution scheme of QCD, on which our predictions are based, and can
possibly be explained only with a violation of the factorization theorem. We
pull together recent theoretical results and comment on their significance.Comment: 10 pages, 4 figures, 3 tables. Presented by the first author at
Workshop "Recent Advances in Perturbative QCD and Hadronic Physics", 20--25
July 2009, ECT*, Trento (Italy), in Honor of Prof. Anatoly Efremov's 75th
Birthday. v2 wrong reference tag removed. v3 Fig. 4 and Ref. [27] correcte
transition form factor within Light Front Quark Model
We study the transition form factor of as a
function of the momentum transfer within the light-front quark model
(LFQM). We compare our result with the experimental data by BaBar as well as
other calculations based on the LFQM in the literature. We show that our
predicted form factor fits well with the experimental data, particularly those
at the large region.Comment: 11 pages, 4 figures, accepted for publication in PR
Study of pesudoscalar transition form factors within light front quark model
We study the transition form factors of the pesudoscalar mesons (
and ) as functions of the momentum transfer within the
light-front quark model. We compare our results with the recent experimental
data by CELLO, CLEO, BaBar and Belle. By considering the possible uncertainties
from the quark masses, we illustrate that our predicted form factors can fit
with all the data, including those at the large regions.Comment: 10 pages, 4 figures, accepted for publication in Phys. Rev.
Hadronic Form Factors: Combining QCD Calculations with Analyticity
I discuss recent applications of QCD light-cone sum rules to various form
factors of pseudoscalar mesons. In this approach both soft and hard
contributions to the form factors are taken into account. Combining QCD
calculation with the analyticity of the form factors, one enlarges the region
of accessible momentum transfers.Comment: 12 pages, 3 figures, Talk at the Workshop "Shifmania, Crossing the
boundaries: Gauge dynamics at strong coupling", May 14-17,2009, Minneapolis,
USA; table entry and reference update
Photon-meson transition form factors of light pseudoscalar mesons
The photon-meson transition form factors of light pseudoscalar mesons , , and are systematically calculated in a
light-cone framework, which is applicable as a light-cone quark model at low
and is also physically in accordance with the light-cone pQCD approach
at large . The calculated results agree with the available experimental
data at high energy scale. We also predict the low behaviors of the
photon-meson transition form factors of , and , which are measurable in process via Primakoff
effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR
A Comprehensive Analysis on the Pion-Photon Transition Form Factor Beyond the Leading Fock State
We perform a comprehensive analysis of the pion-photon transition form factor
involving the transverse momentum corrections with the
present CLEO experimental data, in which the contributions beyond the leading
Fock state have been taken into consideration. As is well-known, the leading
Fock-state contribution dominates of at large momentum
transfer () region. One should include the contributions beyond the
leading Fock state in small region. In this paper, we construct a
phenomenological expression to estimate the contributions beyond the leading
Fock state based on its asymptotic behavior at . Our present
theoretical results agree well with the experimental data in the whole
region. Then, we extract some useful information of the pionic leading twist-2
distribution amplitude (DA) by comparing our results of
with the CLEO data. By taking best fit, we have the DA moments,
,
and all of higher moments, which are closed to the asymptotic-like behavior of
the pion wavefunction.Comment: 25 pages, 7 figures. Typo error correcte
Information on the Pion Distribution Amplitude from the Pion-Photon Transition Form Factor with the Belle and BaBar Data
The pion-photon transition form factor (TFF) provides strong constraints on
the pion distribution amplitude (DA). We perform an analysis of all existing
data (CELLO, CLEO, BaBar, Belle) on the pion-photon TFF by means of light-cone
pQCD approach in which we include the next-to-leading order correction to the
valence-quark contribution and estimate the non-valence-quark contribution by a
phenomenological model based on the TFF's limiting behavior at both
and . At present, the pion DA is not definitely determined, it is
helpful to have a pion DA model that can mimic all the suggested behaviors,
especially to agree with the constraints from the pion-photon TFF in whole
measured region within a consistent way. For the purpose, we adopt the
conventional model for pion wavefunction/DA that has been constructed in our
previous paper \cite{hw1}, whose broadness is controlled by a parameter . We
fix the DA parameters by using the CELLO, CLEO, BABAR and Belle data within the
smaller region ( GeV), where all the data are consistent
with each other. And then the pion-photon TFF is extrapolated into larger
region. We observe that the BABAR favors which has the behavior close
to the Chernyak-Zhitnitsky DA, whereas the recent Belle favors which
is close to the asymptotic DA. We need more accurate data at large region
to determine the precise value of , and the definite behavior of pion DA can
be concluded finally by the consistent data in the coming future.Comment: 6 pages, 5 figures. Slightly changed and references update
mixing and the next-to-leading-order power correction
The next-to-leading-order power correction for and
form factors are evaluated and employed to explore the
mixing. The parameters of the two mixing angle scheme are
extracted from the data for form factors, two photon decay widths and radiative
decays. The analysis gives the result:
, where
and are the decay constants and the mixing
angles for the singlet (octet) state. In addition, we arrive at a stringent
range for MeV MeV.Comment: 23 pages, 9 figures, To be publshied in Phys. Rev.
A New 5 Flavour NLO Analysis and Parametrizations of Parton Distributions of the Real Photon
New, radiatively generated, NLO quark (u,d,s,c,b) and gluon densities in a
real, unpolarized photon are presented. We perform three global fits, based on
the NLO DGLAP evolution equations for Q^2>1 GeV^2, to all the available
structure function F_2^gamma(x,Q^2) data. As in our previous LO analysis we
utilize two theoretical approaches. Two models, denoted as FFNS_{CJK}1 & 2 NLO,
adopt the so-called Fixed Flavour-Number Scheme for calculation of the
heavy-quark contributions to F_2^gamma(x,Q^2), the CJK NLO model applies the
ACOT(chi) scheme. We examine the results of our fits by a comparison with the
LEP data for the Q^2 dependence of the F_2^gamma, averaged over various
x-regions, and the F_2,c^gamma. Grid parametrizations of the parton densities
for all fits are provided.Comment: 49 pages, 27 postscript figures; FORTRAN programs available at
http://www.fuw.edu.pl/~pjank/param.htm
Distributed Testing of Excluded Subgraphs
We study property testing in the context of distributed computing, under the
classical CONGEST model. It is known that testing whether a graph is
triangle-free can be done in a constant number of rounds, where the constant
depends on how far the input graph is from being triangle-free. We show that,
for every connected 4-node graph H, testing whether a graph is H-free can be
done in a constant number of rounds too. The constant also depends on how far
the input graph is from being H-free, and the dependence is identical to the
one in the case of testing triangles. Hence, in particular, testing whether a
graph is K_4-free, and testing whether a graph is C_4-free can be done in a
constant number of rounds (where K_k denotes the k-node clique, and C_k denotes
the k-node cycle). On the other hand, we show that testing K_k-freeness and
C_k-freeness for k>4 appear to be much harder. Specifically, we investigate two
natural types of generic algorithms for testing H-freeness, called DFS tester
and BFS tester. The latter captures the previously known algorithm to test the
presence of triangles, while the former captures our generic algorithm to test
the presence of a 4-node graph pattern H. We prove that both DFS and BFS
testers fail to test K_k-freeness and C_k-freeness in a constant number of
rounds for k>4
- …
