431 research outputs found

    A Study of Giant Pulses from PSR J1824-2452A

    Get PDF
    We have searched for microsecond bursts of emission from millisecond pulsars in the globular cluster M28 using the Parkes radio telescope. We detected a total of 27 giant pulses from the known emitter PSR J1824-2452A. At wavelengths around 20 cm the giant pulses are scatter-broadened to widths of around 2 microseconds and follow power-law statistics. The pulses occur in two narrow phase-windows which correlate in phase with X-ray emission and trail the peaks of the integrated radio pulse-components. Notably, the integrated radio emission at these phase windows has a steeper spectral index than other emission. The giant pulses exhibit a high degree of polarization, with many being 100% elliptically polarized. Their position angles appear random. Although the integrated emission of PSR J1824-2452A is relatively stable for the frequencies and bandwidths observed, the intensities of individual giant pulses vary considerably across our bands. Two pulses were detected at both 2700 and 3500 MHz. The narrower of the two pulses is 20 ns wide at 3500 MHz. At 2700 MHz this pulse has an inferred brightness temperature at maximum of 5 x 10^37 K. Our observations suggest the giant pulses of PSR J1824-2452A are generated in the same part of the magnetosphere as X-ray emission through a different emission process to that of ordinary pulses.Comment: Accepted by Ap

    A Search for Sub-Millisecond Pulsars

    Full text link
    We have conducted a search of 19 southern Galactic globular clusters for sub-millisecond pulsars at 660 MHz with the Parkes 64-m radio telescope. To minimize dispersion smearing we used the CPSR baseband recorder, which samples the 20 MHz observing band at the Nyquist rate. By possessing a complete description of the signal we could synthesize an optimal filterbank in software, and in the case of globular clusters of known dispersion measure, much of the dispersion could be removed using coherent techniques. This allowed for very high time resolution (25.6 us in most cases), making our searches in general sensitive to sub-millisecond pulsars with flux densities greater than about 3 mJy at 50 cm. No new pulsars were discovered, placing important constraints on the proportion of pulsars with very short spin periods in these clusters.Comment: 8 pages, 3 figures, to appear in Ap

    Pulsars in Globular Clusters with the SKA

    Get PDF
    Globular clusters are highly efficient radio pulsar factories. These pulsars can be used as precision probes of the clusters' structure, gas content, magnetic field, and formation history; some of them are also highly interesting in their own right because they probe exotic stellar evolution scenarios as well as the physics of dense matter, accretion, and gravity. Deep searches with SKA1-MID and SKA1-LOW will plausibly double to triple the known population. Such searches will only require one to a few tied-array beams, and can be done during early commissioning of the telescope - before an all-sky pulsar survey using hundreds to thousands of tied-array beams is feasible. With SKA2 it will be possible to observe most of the active radio pulsars within a large fraction of the Galactic globular clusters, an estimated population of 600 - 3700 observable pulsars (those beamed towards us). This rivals the total population of millisecond pulsars that can be found in the Galactic field; fully characterizing it will provide the best-possible physical laboratories as well as a rich dynamical history of the Galactic globular cluster system.Comment: 15 pages, 5 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04

    On the Eccentricities and Merger Rates of Double Neutron Star Binaries and the Creation of "Double Supernovae"

    Full text link
    We demonstrate that a natural consequence of an asymmetric kick imparted to neutron stars at birth is that the majority of double neutron star binaries should possess highly eccentric orbits. This leads to greatly accelerated orbital decay, due to the enormous increase in the emission of gravitational radiation at periastron as originally demonstrated by Peters (1964). A uniform distribution of kick velocities constrained to the orbital plane would result in ~24% of surviving binaries coalescing at least 10,000 times faster than an unperturbed circular system. Even if the planar kick constraint is lifted, ~6% of bound systems still coalesce this rapidly. In a non-negligible fraction of cases it may even be possible that the system could coalesce within 10 years of the final supernova, resulting in what we might term a "double supernova''. For systems resembling the progenitor of PSR J0737-3039A, this number is as high as \~9% (in the planar kick model). Whether the kick velocity distribution extends to the range required to achieve this is still unclear. We do know that the observed population of binary pulsars has a deficit of highly eccentric systems at small orbital periods. In contrast, the long-period systems favour large eccentricities, as expected. We argue that this is because the short-period highly eccentric systems have already coalesced and are thus selected against by pulsar surveys. This effect needs to be taken into account when using the scale-factor method to estimate the coalescence rate of double neutron star binaries. We therefore assert that the coalesence rate of such binaries is underestimated by a factor of several.Comment: 7 pages, 6 figures, submitted to Ap

    Implications of the PSR 1257+12 Planetary System for Isolated Millisecond Pulsars

    Get PDF
    The first extrasolar planets were discovered in 1992 around the millisecond pulsar PSR 1257+12. We show that recent developments in the study of accretion onto magnetized stars, plus the existence of the innermost, moon-sized planet in the PSR 1257+12 system, suggest that the pulsar was born with approximately its current rotation frequency and magnetic moment. If so, this has important implications for the formation and evolution of neutron star magnetic fields as well as for the formation of planets around pulsars. In particular, it suggests that some and perhaps all isolated millisecond pulsars may have been born with high spin rates and low magnetic fields instead of having been recycled by accretion.Comment: 17 pages including one figure, uses aaspp4, accepted by Ap

    Determination of the geometry of the PSR B1913+16 system by geodetic precession

    Get PDF
    New observations of the binary pulsar B1913+16 are presented. Since 1978 the leading component of the pulse profile has weakend dramatically by about 40%. For the first time, a decrease in component separation is observed, consistent with expectations of geodetic precession. Assuming the correctness of general relativity and a circular hollow-cone like beam, a fully consistent model for the system geometry is developed. The misalignment angle between pulsar spin and orbital momentum is determined giving direct evidence for an asymmetric kick during the second supernova explosion. It is argued that the orbital inclination angle is 132\fdg8 (rather than 47\fdg2). A prediction of this model is that PSR B1913+16 will not be observable anymore after the year 2025.Comment: 16 pages, incl. 5 figures, accepted for publication in Ap

    Recycled Pulsars Discovered at High Radio Frequency

    Get PDF
    We present the timing parameters of nine pulsars discovered in a survey of intermediate Galactic latitudes at 1400 MHz with the Parkes radio telescope. Eight of these pulsars possess small pulse periods and period derivatives thought to be indicative of ``recycling''. Six of the pulsars are in circular binary systems, including two with relatively massive white dwarf companions. We discuss the implications of these new systems for theories of binary formation and evolution. One long-period pulsar (J1410-7404) has a moderately weak magnetic field and an exceedingly narrow average pulse profile, similar to other recycled pulsars.Comment: 9 pages, 4 figures. Accepted for publication in Ap

    MeerTime - the MeerKAT Key Science Program on Pulsar Timing

    Full text link
    The MeerKAT telescope represents an outstanding opportunity for radio pulsar timing science with its unique combination of a large collecting area and aperture efficiency (effective area ∌\sim7500 m2^2), system temperature (T<20T<20K), high slew speeds (1-2 deg/s), large bandwidths (770 MHz at 20cm wavelengths), southern hemisphere location (latitude ∌−30∘\sim -30^\circ) and ability to form up to four sub-arrays. The MeerTime project is a five-year program on the MeerKAT array by an international consortium that will regularly time over 1000 radio pulsars to perform tests of relativistic gravity, search for the gravitational wave signature induced by supermassive black hole binaries in the timing residuals of millisecond pulsars, explore the interiors of neutron stars through a pulsar glitch monitoring programme, explore the origin and evolution of binary pulsars, monitor the swarms of pulsars that inhabit globular clusters and monitor radio magnetars. In addition to these primary programmes, over 1000 pulsars will have their arrival times monitored and the data made immediately public. The MeerTime pulsar backend comprises two server-class machines each of which possess four Graphics Processing Units. Up to four pulsars can be coherently dedispersed simultaneously up to dispersion measures of over 1000 pc cm−3^{-3}. All data will be provided in psrfits format. The MeerTime backend will be capable of producing coherently dedispersed filterbank data for timing multiple pulsars in the cores of globular clusters that is useful for pulsar searches of tied array beams. All MeerTime data will ultimately be made available for public use, and any published results will include the arrival times and profiles used in the results.Comment: 15 pages, MeerKAT Science: On the Pathway to the SKA, 25-27 May, 2016, Stellenbosch, South Africa, available at: https://pos.sissa.it/277/011/pd
    • 

    corecore