158,000 research outputs found

    Toward precision mass measurements of neutron-rich nuclei relevant to rr-process nucleosynthesis

    Full text link
    The open question of where, when, and how the heavy elements beyond iron enrich our Universe has triggered a new era in nuclear physics studies.\ Of all the relevant nuclear physics inputs, the mass of very neutron-rich nuclides is a key quantity for revealing the origin of heavy elements beyond iron.\ Although the precise determination of this property is a great challenge, enormous progress has been made in recent decades, and it has contributed significantly to both nuclear structure and astrophysical nucleosynthesis studies.\ In this review, we first survey our present knowledge of the nuclear mass surface, emphasizing the importance of nuclear mass precision in rr-process calculations.\ We then discuss recent progress in various methods of nuclear mass measurement with a few selected examples.\ For each method, we focus on recent breakthroughs and discuss possible ways of improving the weighing of rr-process nuclides.Comment: 10 figures, review articles in Frontiers of Physic

    The mean velocity of two-state models of molecular motor

    Full text link
    The motion of molecular motor is essential to the biophysical functioning of living cells. In principle, this motion can be regraded as a multiple chemical states process. In which, the molecular motor can jump between different chemical states, and in each chemical state, the motor moves forward or backward in a corresponding potential. So, mathematically, the motion of molecular motor can be described by several coupled one-dimensional hopping models or by several coupled Fokker-Planck equations. To know the basic properties of molecular motor, in this paper, we will give detailed analysis about the simplest cases: in which there are only two chemical states. Actually, many of the existing models, such as the flashing ratchet model, can be regarded as a two-state model. From the explicit expression of the mean velocity, we find that the mean velocity of molecular motor might be nonzero even if the potential in each state is periodic, which means that there is no energy input to the molecular motor in each of the two states. At the same time, the mean velocity might be zero even if there is energy input to the molecular motor. Generally, the velocity of molecular motor depends not only on the potentials (or corresponding forward and backward transition rates) in the two states, but also on the transition rates between the two chemical states

    Two-parameter quantum general linear supergroups

    Full text link
    The universal R-matrix of two-parameter quantum general linear supergroups is computed explicitly based on the RTT realization of Faddeev--Reshetikhin--Takhtajan.Comment: v1: 14 pages. v2: published version, 9 pages, title changed and the section on central extension remove

    Off-Axis Afterglow Light Curves from High-Resolution Hydrodynamical Jet Simulations

    Get PDF
    Numerical jet simulations serve a valuable role in calculating gamma-ray burst afterglow emission beyond analytical approximations. Here we present the results of high resolution 2D simulations of decelerating relativistic jets performed using the RAM adaptive mesh refinement relativistic hydrodynamics code. We have applied a separate synchrotron radiation code to the simulation results in order to calculate light curves at frequencies varying from radio to X-ray for observers at various angles from the jet axis. We provide a confirmation from radio light curves from simulations rather than from a simplified jet model for earlier results in the literature finding that only a very small number of local Ibc supernovae can possibly harbor an orphan afterglow. Also, recent studies have noted an unexpected lack of observed jet breaks in the Swift sample. Using a jet simulation with physical parameters representative for an average Swift sample burst, such as a jet half opening angle of 0.1 rad and a source redshift of z = 2.23, we have created synthetic light curves at 1.5 keV with artificial errors while accounting for Swift instrument biases as well. A large set of these light curves have been generated and analyzed using a Monte Carlo approach. Single and broken power law fits are compared. We find that for increasing observer angle, the jet break quickly becomes hard to detect. This holds true even when the observer remains well within the jet opening angle. We find that the odds that a Swift light curve from a randomly oriented 0.1 radians jet at z = 2.23 will exhibit a jet break at the 3 sigma level are only 12 percent. The observer angle therefore provides a natural explanation for the lack of perceived jet breaks in the Swift sample.Comment: 4 pages, 3 figures. First of two contributions to proceedings GRB2010 Maryland conference. Editors: McEnery, Racusin and Gehrels. The data from this paper is publicly available from http://cosmo.nyu.edu/afterglowlibrary

    An on-line library of afterglow light curves

    Get PDF
    Numerical studies of gamma-ray burst afterglow jets reveal significant qualitative differences with simplified analytical models. We present an on-line library of synthetic afterglow light curves and broadband spectra for use in interpreting observational data. Light curves have been calculated for various physics settings such as explosion energy and circumburst structure, as well as differing jet parameters and observer angle and redshift. Calculations gave been done for observer frequencies ranging from low radio to X-ray and for observer times from hours to decades after the burst. The light curves have been calculated from high-resolution 2D hydrodynamical simulations performed with the RAM adaptive-mesh refinement code and a detailed synchrotron radiation code. The library will contain both generic afterglow simulations as well as specific case studies and will be freely accessible at http://cosmo.nyu.edu/afterglowlibrary . The synthetic light curves can be used as a check on the accuracy of physical parameters derived from analytical model fits to afterglow data, to quantitatively explore the consequences of varying parameters such as observer angle and for accurate predictions of future telescope data.Comment: 4 pages, 2 figures. Second of two contributions to proceedings GRB2010 Maryland conference. Editors: McEnery, Racusin and Gehrels. The data from this paper is publicly available from http://cosmo.nyu.edu/afterglowlibrary
    • …
    corecore