4,637 research outputs found

    The Metallicity and Reddening of Stars in the Inner Galactic Bulge

    Get PDF
    We present a preliminary analysis of K, J-K color magnitude diagrams (CMDs) for 7 different positions on or close to the minor axis of the Milky Way at Galactic latitudes between +0.1^\circ and -2.8^\circ. From the slopes of the (linear) giant branches in these CMDs we derive a dependence of on latitude for b between -0.8^\circ and -2.8^\circ of -0.085 \pm 0.033 dex/degree. When combined with the data from Tiede et al. we find for -0.8^\circ \leq b \leq -10.3^\circ the slope in is -0.064 \pm 0.012 dex/degree. An extrapolation to the Galactic Center predicts [Fe/H] = +0.034 \pm 0.053 dex. We also derive average values for the extinction in the K band (A_K) of between 2.15 and 0.27 for the inner bulge fields corresponding to average values of E(J-K) of between 3.46 and 0.44. There is a well defined linear relation between the average extinction for a field and the star-to-star scatter in the extinction for the stars within each field. This result suggests that the typical apparent angular scale size for an absorbing cloud is small compared with the field size (90\arcsec on a side). Finally, from an examination of the luminosity function of bright giants in each field we conclude that the young component of the stellar population observed near the Galactic center declines in density much more quickly than the overall bulge population and is undetectable beyond 1^\circ from the Galactic center.Comment: accepted for publication in Astron. Jour. Compressed file contains the text, 9 figures, and 6 tables prepared with AAS Latex macros v. 4.

    Infrared Spectroscopy of GX 1+4/V2116 Oph: Evidence for a Fast Red Giant Wind?

    Get PDF
    We present infrared spectroscopy of the low-mass X-ray binary GX 1+4/V2116 Oph. This symbiotic binary consists of a 2-min accretion-powered pulsar and an M5 III red giant. A strong He I 1.083 micron emission line with a pronounced P Cygni profile was observed. From the blue edge of this feature, we infer an outflow velocity of 250(50) km/s. This is an order of magnitude faster than a typical red giant wind, and we suggest that radiation from the accretion disk or the neutron star may contribute to the acceleration of the outflow. We infer a wind mass loss rate of around 10^-6 Msun/yr. Accretion from such a strong stellar wind provides a plausible alternative to Roche lobe overflow for supplying the accretion disk which powers the X-ray source. The H I Paschen beta and He I 1.083 micron lines showed no evidence for the dramatic changes previously reported in some optical lines, and no evidence for pulsations at the 2-min pulsar period.Comment: 11 pages including 2 PS figures. To appear in ApJ Letter

    Theoretical Isochrones with Extinction in the K Band. II. J - K versus K

    Full text link
    We calculate theoretical isochrones in a consistent way for five filter pairs near the J and K band atmospheric windows (J-K, J-K', J-Ks, F110W-F205W, and F110W-F222M) using the Padova stellar evolutionary models of Girardi et al. We present magnitude transformations between various K-band filters as a function of color. Isochrones with extinction of up to 6 mag in the K band are also presented. As found for the filter pairs composed of H & K band filters, we find that the reddened isochrones of different filter pairs behave as if they follow different extinction laws, and that the extinction curves of Hubble Space Telescope NICMOS filter pairs in the color-magnitude diagram are considerably nonlinear. Because of these problems, extinction values estimated with NICMOS filters can be in error by up to 1.3 mag. Our calculation suggests that the extinction law implied by the observations of Rieke et al for wavelengths between the J and K bands is better described by a power-law function with an exponent of 1.66 instead of 1.59, which is commonly used with an assumption that the transmission functions of J and K filters are Dirac delta functions.Comment: Published in PASP, 118, 62 (Jan. 2006

    SiO Maser Survey of the Large-Amplitude Variables in the Galactic Center

    Full text link
    We have surveyed ~400 known large-amplitude variables within 15' of the galactic center in the SiO J=1--0 v=1 and 2 maser lines at 43 GHz, resulting in 179 detections. SiO lines were also detected from 16 other resulting in 180 detections. SiO lines were also detected from 16 other sources, which are located within 20" (the telescope half beamwidth) of the program objects. The detection rate of 48 percent is comparable to that obtained in Bulge IRAS source surveys. Among the SiO detections, five stars have radial velocities greater than 200 km/s. The SiO detection rate increases steeply with the period of light variation, particularly for stars with P>500 d, where it exceeds 80%. We found that, at a given period, the SiO detection rate is approximately three times that for OH. These facts suggest that the large-amplitude variables in the Nuclear Disk region are AGB stars similar in their overall properties to the inner and outer Bulge IRAS/SiO sources. From the set of radial velocity data, the mass distribution within 30 pc of the galactic center is derived by a new method which is based on the collisionless Boltzmann equation integrated along the line of sight. The mass within 30 pc is about 6.4 [\pm 0.7] \times 10^7 M_{\odot} and the mass of the central black hole is 2.7 [\pm 1.3] \times 10^6 M_{\odot}. Consideration of the line-of-sight velocity of each star and its potential energy leads to the conclusion that the five high-velocity stars come from galactocentric distances as high as 300 pc. The high-velocity subsample of stars with negative radial velocities exhibits a tendency to have brighter K magnitudes than the subsample of stars with positive velocities. The origin of these high-velocity stars is discussed.Comment: Hires. figures are available as No.604 of NRO report at http://www.nro.nao.ac.jp/library/report/list.html . PASJ 56 (april 28 issue) in pres

    The analysis of isotope clearance data in biological systems

    Get PDF
    Clearance curves resulting from biological studies using radioactive isotopes are frequently described mathematically in terms of the summation of a number of exponential terms. This allows the curves to be interpreted by reference to the physical characteristics of a model of the biological system. Numerous exponential curve fitting methods are now available which make use of digital computers. Despite the very widespread application of exponential curve analysis, a systematic study of the relative importance of the factors which affect the parameter errors has not yet been described. A quantitative statistical study of the problem is described in this thesis with particular reference to the special limitations encountered in biological investigations. These limitations are firstly, the limited number of samples and, secondly, the relatively poor accuracy normally associated with such studies. The accuracy would not normally be better than +/- 2% nor would the number of samples exceed 60. Of the ten principal factors which affect the errors in the estimated parameters, two of these, the exponent and amplitude ratios, are intrinsic factors dependent on the system under study. The principal factors under the control of the investigator are the number of samples, the data accuracy, the sampling frequency, and the duration of sampling, which determines the extent to which the data define the function under study. Other factors of lesser importance were not investigated in the same detail as those mentioned above. Artificial data, on which a controlled random error was superimposed, were generated by a computer programme and recorded on magnetic tape in a format suitable for exponential analysis by the Berman SAAM-22 computer programme. The parameter errors were estimated by a statistical analysis of twenty curve fitting operations carried out on twenty different sets of data with a constant controlled random error. Twice the coefficient of variation, expressed as a percentage, was taken to be the parameter error. A range of exponential and amplitude ratios was investigated for two exponential and three exponential functions with data errors from 2 - 10%. The study has indicated, in quantitative terms, the effects of the various factors on the errors associated with the estimated parameters, and also the relative importance of these factors. The results indicate the conditions which must be fulfilled if sellable results are to be obtained by exponential analysis. The information is also of value in designing investigations which will subsequently involve exponential analysis of the data. In view of the parameter errors encountered in the study of two and three exponential functions, it appears unlikely that analysis of biological data in terms of a greater number of exponentials will be helpful unless further independent information is available concerning the biological system under study. Two clinical applications of exponential curve fitting procedures are described. In a study of uric acid metabolism, two different computer programmes were used to examine the same data. A mathematical significance test was used to indicate which sets of data were better fitted by a double rather than a single exponential function. It was found that with one of these programmes only, when using a particular weighting factor on the data, a strong correlation exists between the indication of a double exponential function in the data and the clinical diagnosis of gout. This is interpreted as evidence of the existence of uric acid in two different physiological forms in gouty patients. In the second study, the detailed investigation of a depth focusing radioisotope collimator, and its use in the measurement of local cortical blood flow in the brain, is described. By using this collimator, clearance curves of radioactivity from a very small volume of M-in tissue in the cortex were obtained. The curves were analysed empirically by means of a double exponential curve fitting procedure, in order to determine the initial slope. No biological significance is assigned to the individual exponential terms. Since the collimator is designed to accept radiation originating specifically in the cortex, the detector is particularly sensitive to changes of flow in this tissue. The results obtained for cortical tissue in normals agree with the values of grey matter flow determined by other workers on much larger regions of the brain containing both grey and white tissues

    SiO Maser Survey of IRAS Sources in the Inner Galactic Disk

    Full text link
    We have surveyed 401 color selected IRAS sources in the Galactic disk in the SiO J=1--0 v= 1 and 2 maser lines at 43 GHz, resulting in 254 (239 new) detections. The observed sources lie mostly in a strip of the inner Galactic disk with boundaries -10<l<40 deg and |b|<3 deg. This survey provides radial velocities of inner-disk stars for which optical measurements cannot be made due to interstellar extinction. The SiO ll--vv diagram in the area 10<l<40degexhibitsfewerobjectscoincidentwiththemolecularringfeaturethantheOH1612MHzsource-10<l<40 deg exhibits fewer objects coincident with the molecular ring feature than the OH 1612 MHz source l--v$ map does, indicating a slight difference of stellar type between SiO and OH emitting stars. After identifying all of the SiO detected sources in the 2MASS near-infrared catalog, we computed their luminosity distances based on the infrared fluxes. We then mapped these objects onto the first quadrant of the Galactic plane. Combining the distances with the SiO radial-velocities, we obtained a pattern speed for SiO maser sources, Omega_P=21 (+- 13) km s^{-1} kpc^{-1}, between the distances 1 and 5.5 kpc, without the use of any dynamical models. The increase of the pattern speed toward the Galactic center (up to 60 km s^{-1} kpc^{-1} between the distances, 5.5 and 7 kpc) suggests the presence of two pattern speeds in the Galaxy.Comment: 38 page 9 figures, high res. eps files are available as NRO report No. 608 (http://www.nro.nao.ac.jp/library/report/list.html). PASJ 56 No. 4 in pres

    Detections of SiO Masers from the Large-Amplitude Variables in the Galactic Nuclear Disk

    Get PDF
    We have surveyed known large-amplitude variables within 15' of the Galactic center in the SiO J=1-0 v=1 and 2 maser lines at 43 GHz, resulting in 79 detections and 58 non-detections. The detection rate of 58 percent is comparable to that obtained in Bulge IRAS source surveys. SiO lines were also detected from four other sources near the program objects. The SiO detection rate increases steeply with the period, particularly for stars with P>500 d, where it exceeds 80%. We found at a given period that the SiO detection rate is approximately double that for OH. These facts suggest that the large-amplitude variables in the Nuclear Disk region are AGB stars similar in their overall properties to the inner and outer bulge IRAS/SiO sources.Comment: 5 pages, 2 figures, 1 Table. PASJ 54, No 2 April 25 issue in pres

    Continual variations in the high energy X-ray flux from Sco X-1

    Get PDF
    Balloon X ray observations of intensity fluctuations in Sco X-

    Schwarzschild Atmospheric Processes: A Classical Path to the Quantum

    Get PDF
    We develop some classical descriptions for processes in the Schwarzschild string atmosphere. These processes suggest relationships between macroscopic and microscopic scales. The classical descriptions developed in this essay highlight the fundamental quantum nature of the Schwarzschild atmospheric processes.Comment: to appear in Gen. Rel. Gra

    PCR Based Microbial Monitor for Analysis of Recycled Water Aboard the ISSA: Issues and Prospects

    Get PDF
    The monitoring of spacecraft life support systems for the presence of health threatening microorganisms is paramount for crew well being and successful completion of missions. Development of technology to monitor spacecraft recycled water based on detection and identification of the genetic material of contaminating microorganisms and viruses would be a substantial improvement over current NASA plans to monitor recycled water samples that call for the use of conventional microbiology techniques which are slow, insensitive, and labor intensive. The union of the molecular biology techniques of DNA probe hybridization and polymerase chain reaction (PCR) offers a powerful method for the detection, identification, and quantification of microorganisms and viruses. This technology is theoretically capable of assaying samples in as little as two hours with specificity and sensitivity unmatched by any other method. A major advance in probe-hybridization/PCR has come about in a technology called TaqMan(TM), which was invented by Perkin Elmer. Instrumentation using TaqMan concepts is evolving towards devices that could meet NASA's needs of size, low power use, and simplicity of operation. The chemistry and molecular biology needed to utilize these probe-hybridization/PCR instruments must evolve in parallel with the hardware. The following issues of chemistry and biology must be addressed in developing a monitor: Early in the development of a PCR-based microbial monitor it will be necessary to decide how many and which organisms does the system need the capacity to detect. We propose a set of 17 different tests that would detect groups of bacteria and fungus, as well as specific eukaryotic parasites and viruses; In order to use the great sensitivity of PCR it will be necessary to concentrate water samples using filtration. If a lower limit of detection of 1 microorganism per 100 ml is required then the microbes in a 100 ml sample must be concentrated into a volume that can be added to a PCR assay; There are not likely to be contaminants in ISSA recycled water that would inhibit PCR resulting in false-negative results; The TaqMan PCR product detection system is the most promising method for developing a rapid, highly automated gene-based microbial monitoring system. The method is inherently quantitative. NASA and other government agencies have invested in other technologies that, although potentially could lead to revolutionary advances, are not likely to mature in the next 5 years into working systems; PCR-based methods cannot distinguish between DNA or RNA of a viable microorganism and that of a non-viable organism. This may or may not be an important issue with reclaimed water on the ISSA. The recycling system probably damages the capacity of the genetic material of any bacteria or viruses killed during processing to serve as a template in a PCR desinged to amplify a large segment of DNA (less than 650 base pairs). If necessary, vital dye staining could be used in addition to PCR, to enumerate the viable cells in a water sample; The quality control methods have been developed to insure that PCR's are working properly, and that reactions are not contaminated with PCR carryover products which could lead to the generation of false-positive results; and The sequences of the small rRNA subunit gene for a large number of microorganisms are known, and they consititue the best database for rational development of the oligonucleotide reagents that give PCR its great specificity. From those gene sequences, sets of oligonucleotide primers for PCR and Taqman detection that could be used in a NASA microbial monitor were constructed using computer based methods. In addition to space utilization, a microbial monitior will have tremendous terrestrial applications. Analysis of patient samples for microbial pathogens, testing industrial effluent for biofouling bacteria, and detection biological warfare agents on the battlefield are but a few of the diverse potential uses for this technology. Once fully developed, gene-based microbial monitors will become the fundamental tool in every lab that tests for microbial contaminants, and serve as a powerful weapon in mankind's war with the germ world
    corecore