4,148 research outputs found

    On probabilistic analog automata

    Full text link
    We consider probabilistic automata on a general state space and study their computational power. The model is based on the concept of language recognition by probabilistic automata due to Rabin and models of analog computation in a noisy environment suggested by Maass and Orponen, and Maass and Sontag. Our main result is a generalization of Rabin's reduction theorem that implies that under very mild conditions, the computational power of the automaton is limited to regular languages

    Circulating Biologically Active Adrenomedullin Predicts Organ Failure and Mortality in Sepsis

    Get PDF
    BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Biologically active adrenomedullin (bio-ADM) is an emerging biomarker for sepsis. We explored whether bio-ADM concentration could predict severity, organ failure, and 30-day mortality in septic patients. METHODS: In 215 septic patients (109 patients with sepsis; 106 patients with septic shock), bio-ADM concentration was measured at diagnosis of sepsis, using sphingotest bio-ADM (Sphingotec GmbH, Hennigsdorf, Germany) and analyzed in terms of sepsis severity, vasopressor use, and 30-day mortality. The number of organ failures, sequential (sepsis-related) organ failure assessment (SOFA) score, and 30-day mortality were compared according to bio-ADM quartiles. RESULTS: Bio-ADM concentration was significantly higher in patients with septic shock, vasopressor use, and non-survivors than in patients with solitary sepsis, no vasopressor use, and survivors, respectively (all P<0.0001). Bio-ADM quartiles were associated with the number of organ failures (P<0.0001), as well as SOFA cardiovascular, renal, coagulation, and liver subscores (all P<0.05). The 30-day mortality rate showed a stepwise increase in each bio-ADM quartile (all P<0.0001). Bio-ADM concentration and SOFA score equally predicted the 30-day mortality (area under the curve: 0.827 vs 0.830). CONCLUSIONS: Bio-ADM could serve as a useful and objective biomarker to predict severity, organ failure, and 30-day mortality in septic patients

    Detecting Quantum Critical Points using Bipartite Fluctuations

    Full text link
    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state of the art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows to find quantum critical points with a much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.Comment: 5 pages, 6 figures + suppl. material; final version, Phys. Rev. Lett. (in press

    General Relation between Entanglement and Fluctuations in One Dimension

    Full text link
    In one dimension very general results from conformal field theory and exact calculations for certain quantum spin systems have established universal scaling properties of the entanglement entropy between two parts of a critical system. Using both analytical and numerical methods, we show that if particle number or spin is conserved, fluctuations in a subsystem obey identical scaling as a function of subsystem size, suggesting that fluctuations are a useful quantity for determining the scaling of entanglement, especially in higher dimensions. We investigate the effects of boundaries and subleading corrections for critical spin and bosonic chains.Comment: 4 pages, 2 figures. Minor changes, references added

    Chaotic quantum ratchets and filters with cold atoms in optical lattices: properties of Floquet states

    Get PDF
    Recently, cesium atoms in optical lattices subjected to cycles of unequally-spaced pulses have been found to show interesting behavior: they represent the first experimental demonstration of a Hamiltonian ratchet mechanism, and they show strong variability of the Dynamical Localization lengths as a function of initial momentum. The behavior differs qualitatively from corresponding atomic systems pulsed with equal periods, which are a textbook implementation of a well-studied quantum chaos paradigm, the quantum delta-kicked particle (delta-QKP). We investigate here the properties of the corresponding eigenstates (Floquet states) in the parameter regime of the new experiments and compare them with those of the eigenstates of the delta-QKP at similar kicking strengths. We show that, with the properties of the Floquet states, we can shed light on the form of the observed ratchet current as well as variations in the Dynamical Localization length.Comment: 9 pages, 9 figure
    • …
    corecore